首页> 外文期刊>Current Biology: CB >Poleward microtubule flux is a major component of spindle dynamics and anaphase A in mitotic Drosophila embryos
【24h】

Poleward microtubule flux is a major component of spindle dynamics and anaphase A in mitotic Drosophila embryos

机译:杆状微管通量是有丝分裂果蝇胚胎纺锤体动力学和后期A的主要成分

获取原文
获取原文并翻译 | 示例
           

摘要

During cell division, eukaryotic cells assemble dynamic microtubule-based spindles to segregate replicated chromosomes [1, 2]. Rapid spindle microtubule turnover, likely derived from dynamic instability, has been documented in yeasts [3,4], plants [5] and vertebrates [6]. Less studied is concerted spindle microtubule poleward translocation (flux) coupled to depolymerization at spindle poles [7]. Microtubule flux has been observed only in vertebrates [7], although there is indirect evidence for it in insect spermatocytes [8, 9] and higher plants [10]. Here we use fluorescent speckle microscopy (FSM) to demonstrate that mitotic spindles of syncytial Drosophila embryos exhibit poleward microtubule flux, indicating that flux is a widely conserved property of spindles. By simultaneously imaging chromosomes (or kinetochores) and flux, we provide evidence that flux is the dominant mechanism driving chromosome-to-pole movement (anaphase A) in these spindles. At 18 C and 24 C, separated sister chromatids moved poleward at average rates (3.6 and 6.6 mum/min, respectively) slightly greater than the mean rates of poleward flux (3.2 and 5.2 mum/min, respectively). However, at 24 C the rate of kinetochoreto-pole movement varied from slower than to twice the mean rate of flux, suggesting that although flux is the dominant mechanism, kinetochore-associated microtubule depolymerization contributes to anaphase A. [References: 27]
机译:在细胞分裂过程中,真核细胞组装基于动态微管的纺锤体,以分离复制的染色体[1、2]。酵母[3,4],植物[5]和脊椎动物[6]中已记录到纺锤体微管快速周转,可能是由于动态不稳定引起的。较少研究的是协调一致的纺锤体微管极向易位(通量)与纺锤体极上的解聚反应[7]。仅在脊椎动物中观察到微管通量[7],尽管昆虫精母细胞[8,9]和高等植物[10]中有间接证据。在这里,我们使用荧光散斑显微镜(FSM)来证明合胞果蝇胚胎的有丝分裂纺锤体表现出极向微管通量,表明通量是纺锤体的一种广泛保存的特性。通过同时成像染色体(或动植物)和通量,我们提供证据表明通量是驱动这些纺锤体中的染色体到极点运动(后期A)的主要机制。在18 C和24 C时,分离的姐妹染色单体以平均速率(分别为3.6和6.6 mum / min)向极移,略大于平均向极通量(分别为3.2和5.2 mum / min)。然而,在24 C时,线粒体到极点的移动速率从慢于平均通量速率变化到两倍,这表明尽管通量是主要机理,但线粒体相关的微管解聚还是后期A的贡献。[参考文献:27]

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号