首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Bio-Template Mediated In Situ Phosphate Transfer to Hierarchically Porous TiO2 with Localized Phosphate Distribution and Enhanced Photoactivities
【24h】

Bio-Template Mediated In Situ Phosphate Transfer to Hierarchically Porous TiO2 with Localized Phosphate Distribution and Enhanced Photoactivities

机译:生物模板介导原位磷酸盐转移到具有局部磷酸盐分布和增强的光活性的分层多孔TiO2中

获取原文
获取原文并翻译 | 示例
           

摘要

A locahzed phosphate distribution (LPD) was introduced for the first time into a porous TiO2 nanostructure by using a biotemplate synthetic strategy, that is, Staphylococcus aureus (S. aureus)-assisted in situ phosphate transfer. The resulting novel nanostructures have shown remarkable enhancement of photoactivities for both selective dye degradation and photo-electrochemical water reduction. Mechanistic understanding reveals that improved separation, directional transport, and less limited interface transfer of the photogenerated electron and hole may be achieved simultaneously within the LPD-modified TiO2 nanostructures because of the existence of the confined negative surface electrostatic field (NSEF) and the spatially oriented upward band bending (UBB). On the contrary, a homogeneous phosphate distribution (HPD) will greatly increase electron interface transfer resistance, which will cause the increase of recombination in bulk. The most important inspiration we can obtain herein is that a comprehensive consideration of the influence of nanostructure on all of the critical aspects of the carrier's dynamics is needed during the rational design and construction of the advanced nanostructured photocatalyst systems. Considering the available resources for the synthesis and strong covalent interaction of phosphate with many other transition metal cations, the authors think that the novel strategy for a simultaneous optimization of the dynamic processes of the charge pairs by introducing LPD is promising for several applications including photocatalysis, photoelectrochemical hydrogen production, and solar cell.
机译:通过使用生物模板合成策略,即金黄色葡萄球菌(S. aureus)辅助原位磷酸盐转移,将磷酸化分布(LPD)首次引入到多孔TiO2纳米结构中。所得的新型纳米结构已显示出用于选择性染料降解和光电化学水还原的光活性显着增强。机械学的理解表明,由于存在有限的负表面静电场(NSEF)和空间取向,LPD修饰的TiO2纳米结构内可以同时实现光生电子和空穴的改善的分离,定向传输和较少的界面转移。向上弯曲带(UBB)。相反,均匀的磷酸盐分布(HPD)将大大增加电子界面的转移阻力,这将导致整体重组的增加。我们在这里可以得到的最重要的启示是,在先进的纳米结构光催化剂体系的合理设计和构建过程中,需要全面考虑纳米结构对载体动力学所有关键方面的影响。考虑到合成磷酸的可用资源以及磷酸盐与许多其他过渡金属阳离子的强共价相互作用,作者认为通过引入LPD同时优化电荷对动态过程的新策略在光催化等多种应用中很有希望,光电化学制氢和太阳能电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号