首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Semiconductor Performance of Phthalocyaninato Lead Complex and Its Nonperipheral Substituted Derivatives for Organic Field Effect Transistors: Density Functional Theory Calculations
【24h】

Semiconductor Performance of Phthalocyaninato Lead Complex and Its Nonperipheral Substituted Derivatives for Organic Field Effect Transistors: Density Functional Theory Calculations

机译:酞菁基铅配合物及其有机周边效应晶体管的非周边取代衍生物的半导体性能:密度泛函理论计算

获取原文
获取原文并翻译 | 示例
           

摘要

Density functional theory (DFT) calculations were carried out to investigate the semiconductor performance for the organic field effect transistor (OFET) of PbPc, PbPc(α-OC2H5)4, and PbPc(α-OC5H_(11))4 {Pc~2_ = dianion of phthalocyanine; [Pc(α-OC2H5)4]~(2-) = dianion of 1,8,15,22-tetraefhoxyphthalocyanine; [Pc(α-OC5H_(11))4]~(2-) = dianion of 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine} in terms of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy, ionization energy (IE), electron affinity (EA), and their reorganization energy (A) during the charge-transport process. On the basis of Marcus electron transfer theory, transfer integral (t) and field effect transistor (FET) properties for the three compounds with known crystal structure have been calculated. In line with the experimental result that PbPc can also work as an n-type semiconductor in addition to a p-type one, theoretical calculations reveal that PbPc has relatively large electron affinity to ensure effective electron injection from Au electrode. Introducing four ethoxy groups on the nonperipheral positions of PbPc decreases both the hole and electron injection barrier relative to Au electrode, and the hole and electron reorganization energy becomes very balanced, making PbPc(α-OC2H5)4 a better ambipolar semiconductor material than PbPc. However, nonperipheral pentyloxy substitution lifts the energy level of both HOMO and LUMO and thus decreases both the IP and EA value of PbPc, resulting in improved hole injection ability but worsened electron injection process. The transfer mobility for electron is revealed to be as large as 0.39 cm~2 V~(-1) s~(-1) for PbPc and 0.16 cm~2 V~(-1) s~(-1) for PbPc(α-OC5H_(11))4. The present work will be helpful to understand the electronic nature for PbPc to work as ambipolar semiconductor and to rationally design novel semiconductor materials for OFET usage.
机译:进行密度泛函理论(DFT)计算以研究PbPc,PbPc(α-OC2H5)4和PbPc(α-OC5H_(11))4 {Pc〜2_的有机场效应晶体管(OFET)的半导体性能=酞菁的二价阴离子; [Pc(α-OC2H5)4]〜(2-)= 1,8,15,22-四乙氧基酞菁的二价阴离子; [Pc(α-OC5H_(11))4]〜(2-)= 1,8,15,22-四(3-戊氧基)酞菁的二价阴离子,其最高占据分子轨道(HOMO)和最低未占据分子轨道电荷传输过程中的分子轨道(LUMO)能量,电离能(IE),电子亲和力(EA)及其重组能(A)。根据马库斯电子转移理论,已经计算出三种具有已知晶体结构的化合物的转移积分(t)和场效应晶体管(FET)特性。与PbPc除p型半导体外还可以用作n型半导体的实验结果相符,理论计算表明,PbPc具有相对较大的电子亲和力,可确保从Au电极有效注入电子。在PbPc的非外围位置引入四个乙氧基会相对于Au电极降低空穴和电子注入势垒,并且空穴和电子重组能变得非常平衡,从而使PbPc(α-OC2H5)4比PbPc成为更好的双极性半导体材料。然而,非外围戊氧基取代提高了HOMO和LUMO的能级,因此降低了PbPc的IP和EA值,导致空穴注入能力提高,但电子注入过程恶化。对于PbPc,电子的迁移率显示为0.39 cm〜2 V〜(-1)s〜(-1),对于PbPc(0.16 cm〜2 V〜(-1)s〜(-1)( α-OC5H_(11))4。当前的工作将有助于理解PbPc用作双极性半导体的电子性质,并合理设计用于OFET的新型半导体材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号