首页> 外文期刊>The Journal of Chemical Physics >Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors
【24h】

Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

机译:自旋轨道耦合用于分子从头算密度矩阵重新归一化组计算:在g张量中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method. (C) 2015 AIP Publishing LLC.
机译:自旋轨道耦合(SOC)被引入分子从头算密度矩阵重归一化组(DMRG)计算。在提出的方案中,首先借助DMRG算法估算电子基态和Born-Oppenheimer(BO)哈密顿量的激发态。由于该算法的自旋适应,对于这些状态,总自旋S是一个很好的量子数。在完成非相对论的DMRG计算后,将显式构造所计算状态的所有磁子级,并在所得基础上扩展SOC运算符。为此,获得自旋轨道耦合的能量和波函数作为由SOC算子矩阵和BO哈密顿矩阵组成的完整哈密顿矩阵的特征值和特征函数。这种处理对应于准简并摄动理论方法,可以看作与原子Russell-Saunders耦合等效的分子。为了评估SOC矩阵元素,可以使用广泛使用的自旋轨道平均场算子来近似完整的Breit-Pauli SOC哈密顿量。该算子可以有效地利用在非相对论DMRG算法期间很容易生成的第二个量化三元组替换算子以及Wigner-Eckart定理。有了一组自旋轨道耦合波函数,按照Gerloch和McMeeking提出的方案计算了分子g张量。它将有效的分子g值解释为最低Kramers对之间的能量差相对于所施加磁场强度的斜率。在化学上相关的Mo络合物上的测试计算证明了所提出方法的功能。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号