...
首页> 外文期刊>The Journal of Chemical Physics >Complexity and simplicity of optimal control theory pulses shaped for controlling vibrational qubits
【24h】

Complexity and simplicity of optimal control theory pulses shaped for controlling vibrational qubits

机译:用于控制振动量子位的最优控制理论脉冲的复杂性和简单性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the context of molecular quantum computation the optimal control theory (OCT) is used to obtain shaped laser pulses for high-fidelity control of vibrational qubits. Optimization is done in time domain and the OCT algorithm varies values of electric field in each time step independently, tuning hundreds of thousands of parameters to find one optimal solution. Such flexibility is not available in experiments, where pulse shaping is done in frequency domain and the number of tuning knobs is much smaller. The question of possible experimental interpretations of theoretically found OCT solutions arises. In this work we analyze very accurate optimal pulse that we obtained for implementing quantum gate CNOT for the two-qubit system encoded into the exited vibrational states of thiophosgene molecule. Next, we try to alter this pulse by reducing the number of available frequency channels and intentionally introducing systematic and random errors (in frequency domain, by modifying the values of amplitudes and phases of different frequency components). We conclude that a very limited number of frequency components (only 32 in the model of thiophosgene) are really necessary for accurate control of the vibrational two-qubit system, and such pulses can be readily constructed using OCT. If the amplitude and phase errors of different frequency components do not exceed ±3 of the optimal values, one can still achieve accurate transformations of the vibrational two-qubit system, with gate fidelity of CNOT exceeding 0.99.
机译:在分子量子计算的上下文中,最优控制理论(OCT)用于获得成形的激光脉冲,以高保真地控制振动量子位。优化是在时域中完成的,OCT算法在每个时间步长中独立地改变电场值,调整数十万个参数以找到一个最优解。这种灵活性在实验中不可用,在实验中,脉冲成形是在频域中完成的,并且调谐旋钮的数量要少得多。出现了对理论上发现的OCT解决方案进行可能的实验解释的问题。在这项工作中,我们分析了我们获得的非常精确的最佳脉冲,该脉冲用于为编码为硫光气分子的振动态的两个量子位系统实现量子门CNOT。接下来,我们尝试通过减少可用频道的数量并有意引入系统和随机误差(在频域中,通过修改不同频率分量的幅度和相位值)来更改此脉冲。我们得出结论,对于精确控制振动二量子位系统,确实需要非常有限数量的频率分量(在硫光气模型中只有32个),并且可以使用OCT轻松构建这样的脉冲。如果不同频率分量的幅度和相位误差不超过最佳值的±3,则仍然可以实现振动二量子位系统的精确变换,而CNOT的栅极保真度超过0.99。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号