...
首页> 外文期刊>The Journal of Chemical Physics >On the spin separation of algebraic two-component relativistic Hamiltonians
【24h】

On the spin separation of algebraic two-component relativistic Hamiltonians

机译:关于代数两成分相对论哈密顿量的自旋分离

获取原文
获取原文并翻译 | 示例
           

摘要

The separation of the spin-free and spin-dependent terms of a given relativistic Hamiltonian is usually facilitated by the Dirac identity. However, this is no longer possible for the recently developed exact two-component relativistic Hamiltonians derived from the matrix representation of the Dirac equation in a kinetically balanced basis. This stems from the fact that the decoupling matrix does not have an explicit form. To resolve this formal difficulty, we first define the spin-dependent term as the difference between a two-component Hamiltonian corresponding to the full Dirac equation and its one-component counterpart corresponding to the spin-free Dirac equation. The series expansion of the spin-dependent term is then developed in two different ways. One is in the spirit of the Douglas-Kroll-Hess (DKH) transformation and the other is based on the perturbative expansion of a two-component Hamiltonian of fixed structure, either the two-step Barysz-Sadlej-Snijders (BSS) or the one-step exact two-component (X2C) form. The algorithms for constructing arbitrary order terms are proposed for both schemes and their convergence patterns are assessed numerically. Truncating the expansions to finite orders leads naturally to a sequence of novel spin-dependent Hamiltonians. In particular, the order-by-order distinctions among the DKH, BSS, and X2C approaches can nicely be revealed. The well-known Pauli, zeroth-order regular approximation, and DKH1 spin-dependent Hamiltonians can also be recovered naturally by appropriately approximating the decoupling and renormalization matrices. On the practical side, the sf-X2Cso-DKH3 Hamiltonian, together with appropriately constructed generally contracted basis sets, is most promising for accounting for relativistic effects in two steps, first spin-free and then spin-dependent, with the latter applied either perturbatively or variationally.
机译:狄拉克恒等式通常有助于给定相对论哈密顿量的无自旋和自旋相关项的分离。但是,这对于从动力学平衡的基础上从狄拉克方程的矩阵表示中得出的最近发展的精确的两分量相对论哈密顿学不再是可能的。这是因为解耦矩阵没有明确的形式。为了解决这个形式上的困难,我们首先将自旋相关项定义为与完整Dirac方程相对应的两分量哈密顿量与与无自旋Dirac方程相对应的一分量哈密顿量之间的差。然后,以两种不同的方式发展了自旋相关项的级数展开。一种是本着Douglas-Kroll-Hess(DKH)转换的精神,另一种是基于固定结构的两分量哈密顿量的扰动展开,即两步Barysz-Sadlej-Snijders(BSS)或一步式精确两成分(X2C)形式。针对这两种方案都提出了构造任意阶项的算法,并对它们的收敛模式进行了数值评估。将扩展截断为有限阶自然会导致一系列新的自旋依赖的哈密顿量。特别是,可以很好地揭示DKH,BSS和X2C方法之间的按顺序区分。通过适当地近似解耦矩阵和重新规范化矩阵,还可以自然地恢复著名的Pauli,零阶正则逼近和DKH1自旋相关的哈密顿量。在实践方面,sf-X2Cso-DKH3哈密顿量,以及适当构造的一般收缩基集,最有可能在两个步骤中说明相对论效应,首先是无自旋,然后是自旋依赖性,而后一种方法是扰动地应用或变化地。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号