首页> 外文期刊>The Journal of Chemical Physics >Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion
【24h】

Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion

机译:玻璃形成液体的动力学。十三。慢动作中的微波加热

获取原文
获取原文并翻译 | 示例
           

摘要

Using time-resolved nonlinear dielectric relaxation measurements at fields as high as 450 kV/cm, the nonthermal effects of energy absorption are studied for simple and associating polar liquids in their supercooled state. The experiment is a low frequency analog of microwave heating and facilitates tracking the flow of energy in time, as it accumulates in slow degrees of freedom and transfers eventually to the vibrational heat bath of the liquid. Most findings agree with a phenomenological model of heterogeneous relaxation regarding structure and configurational temperature. The relevant thermal behavior of monohydroxy alcohols differs considerably from the cases of simple nonassociating liquids due to their distinct origins of the prominent dielectric absorption mode for the two classes of liquids. Nonthermal effects are observed as dynamics that are accelerated without increasing sample temperature, but for the present low frequencies the changes remain too small to explain the high efficiencies reported for microwave chemistry. Limitations as to how rapidly the faster relaxation time constants are able to adjust to temperature separate the modes of the dispersive -relaxation into a “relaxation” and an “aging” regime, thereby explaining the incompatibility of heterogeneous dynamics with common physical aging observations.
机译:通过在高达450 kV / cm的场上使用时间分辨的非线性介电弛豫测量,研究了过冷状态下的简单和缔合极性液体的能量吸收的非热效应。该实验是微波加热的低频模拟,有助于及时跟踪能量流,因为它以缓慢的自由度积累,最终转移到液体的振动热浴中。大多数发现与关于结构和构型温度的异质弛豫的现象学模型一致。一羟基醇的相关热行为与简单的非缔合液体的情况有很大不同,这是由于它们对两种液体的显着介电吸收模式的不同起源。观察到非热效应是在不增加样品温度的情况下加速的动力学,但是对于当前的低频,其变化仍然太小,不足以解释微波化学所报道的高效率。关于更快的弛豫时间常数能够多快调整以适应温度的限制,将分散松弛的模式分为“松弛”和“衰老”状态,从而解释了异质动力学与常见物理老化观测值的不兼容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号