首页> 外文期刊>The Journal of Chemical Physics >Pressure and temperature dependence of hydrophobic hydration: Volumetric, compressibility, and thermodynamic signatures
【24h】

Pressure and temperature dependence of hydrophobic hydration: Volumetric, compressibility, and thermodynamic signatures

机译:疏水水合的压力和温度依赖性:体积,可压缩性和热力学特征

获取原文
获取原文并翻译 | 示例
           

摘要

The combined effect of pressure and temperature on hydrophobic hydration of a nonpolar methanelike solute is investigated by extensive simulations in the TIP4P model of water. Using test-particle insertion techniques, free energies of hydration under a range of pressures from 1 to 3000 atm are computed at eight temperatures ranging from 278.15 to 368.15 K. Corresponding enthalpy, entropy, and heat capacity accompanying the hydration process are estimated from the temperature dependence of the free energies. Partial molar and excess volumes calculated using pressure derivatives of the simulated free energies are consistent with those determined by direct volume simulations; but direct volume determination offers more reliable estimates for compressibility. At 298.15 K, partial molar and excess isothermal compressibilities of methane are negative at 1 atm. Partial molar and excess adiabatic (isentropic) compressibilities are estimated to be also negative under the same conditions. But partial molar and excess isothermal compressibilities are positive at high pressures, with a crossover from negative to positive compressibility at similar to 100-1000 atm. This trend is consistent with experiments on aliphatic amino acids and pressure-unfolded states of proteins. For the range of pressures simulated, hydration heat capacity exhibits little pressure dependence, also in apparent agreement with experiment. When pressure is raised at constant room temperature, hydration free energy increases while its entropic component remains essentially constant. Thus, the increasing unfavorability of hydration under raised pressure is seen as largely an enthalpic effect. Ramifications of the findings of the authors for biopolymer conformational transitions are discussed.
机译:通过在水的TIP4P模型中进行大量模拟,研究了压力和温度对非极性甲烷样溶质疏水水合的综合影响。使用测试粒子插入技术,在278.15至368.15 K的八个温度下,计算了1至3000 atm压力范围内的水合作用的自由能。根据温度估算了伴随水合作用的焓,熵和热容量自由能的依赖性。使用模拟自由能的压力导数计算的部分摩尔和过量体积与直接体积模拟确定的摩尔体积和过量体积一致。但是直接确定体积可提供更可靠的可压缩性估计。在298.15 K时,甲烷在1 atm处的部分摩尔分数和过量的等温压缩率均为负。在相同条件下,部分摩尔和绝热(等熵)的可压缩性估计也为负。但是部分摩尔和过高的等温压缩率在高压下为正,在相似的100-1000 atm范围内从负压缩到正压缩。这种趋势与脂族氨基酸和蛋白质的压力未折叠状态的实验一致。对于模拟的压力范围,水合热容几乎没有压力依赖性,也与实验明显吻合。当在恒定的室温下升高压力时,水合自由能增加,而其熵分量基本保持恒定。因此,在升高的压力下增加的水合不利性在很大程度上被认为是焓效应。讨论了作者对生物聚合物构象转变的发现的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号