首页> 外文期刊>The Journal of Chemical Physics >Multiscale modeling of materials based on force and charge density fidelity
【24h】

Multiscale modeling of materials based on force and charge density fidelity

机译:基于力和电荷密度保真度的材料多尺度建模

获取原文
获取原文并翻译 | 示例
           

摘要

The approximate representation of a quantum solid as an equivalent composite semiclassical solid is considered for insulating materials.The composite is comprised of point ions moving on a potential energy surface.In the classical bulk domain this potential energy is represented by potentials constructed to give the same structure and elastic properties as the underlying quantum solid.In a small local quantum domain the potential is determined from a detailed quantum calculation of the electronic structure.The new features of this well-studied problem are (1) a clearly stated theoretical context in which approximations leading to the model are introduced,(2) the representation of the classical domain by potentials focused on reproducing the specific quantum response being studied,(3) development of "pseudoatoms" for a realistic treatment of charge densities where bonds have been broken to define the environment of the quantum domain,and (4) inclusion of polarization effects on the quantum domain due to its distant bulk environment.This formal structure is illustrated in detail for a SiO2 nanorod.More importantly,each component of the proposed modeling is tested quantitatively for this case,verifying its accuracy as a faithful multiscale model of the original quantum solid.To do so,the charge density of the entire nanorod is calculated quantum mechanically to provide the reference by which to judge the accuracy of the modeling.The construction of the classical potentials,the rod,the pseudoatoms,and the multipoles is discussed and tested in detail.It is then shown that the quantum rod,the rod constructed from the classical potentials,and the composite classical/quantum rod all have the same equilibrium structure and response to elastic strain.In more detail,the charge density and forces in the quantum subdomain are accurately reproduced by the proposed modeling of the environmental effects even for strains beyond the linear domain.The accuracy of the modeling is shown to apply for two quite different choices for the underlying quantum chemical method:transfer Hamiltonian and density functional methods.
机译:对于绝缘材料,可以考虑将量子固体近似表示为等效的复合半经典固体,该复合物由在势能表面上移动的点离子组成。结构和弹性特性作为潜在的量子固体。在一个小的局部量子域中,电势是通过详细的电子结构量子计算确定的。这个经过充分研究的问题的新特征是(1)清晰阐明的理论背景,其中引入导致模型的近似,(2)通过专注于再现正在研究的特定量子响应的电势来表示经典域,(3)开发“伪原子”以实际处理电荷被破坏成键的电荷密度定义量子域的环境,以及(4)在量子上包含极化效应SiO2纳米棒详细说明了这种形式结构。更重要的是,在这种情况下,对提出的模型的每个组件进行了定量测试,验证了其作为原始量子固体的忠实多尺度模型的准确性。为此,用量子力学方法计算了整个纳米棒的电荷密度,为判断建模的准确性提供了参考。讨论并测试了经典势能,棒,伪原子和多极的构造。然后表明,量子棒,由经典势能构造的棒,以及复合经典/量子棒都具有相同的平衡结构和对弹性应变的响应。更详细地,量子棒中的电荷密度和力通过拟议的环境效应建模可以精确地重现量子子域,即使对于超出线性域的应变也是如此。为基础量子化学方法申请两个完全不同的选择:转移哈密顿量法和密度泛函方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号