首页> 外文期刊>The Journal of Chemical Physics >Nonequilibrium energy dissipation at the interface of sliding model hydroxylated alpha-alumina surfaces
【24h】

Nonequilibrium energy dissipation at the interface of sliding model hydroxylated alpha-alumina surfaces

机译:滑动模型羟基化α-氧化铝表面界面处的非平衡能量耗散

获取原文
获取原文并翻译 | 示例
           

摘要

Nonequilibrium molecular dynamics simulations were performed to study the dynamics of energy transfer at the interface of a small nanoscale hydroxylated alpha-alumina surface sliding across a much larger surface of the same material. Sliding velocities of 0.05, 0.5, 5, and 50 m/s and loads of 0, 0.0625, 5, 15, 25, and 100 nN were considered. Nonequilibrium energy distributions were found at the interface for each of these conditions. The velocity distribution P(v) for the atoms in a sublayer of the smaller surface oscillates during the sliding, reflecting the periodicity of the interfacial intermolecular potential. When averaged over the sliding, this P(v) for each of the sublayers is bimodal with Boltzmann and non-Boltzmann components. The non-Boltzmann component, with temperatures in excess of 1000 K and as high as 2500 K, is most important for the interfacial H-atom sublayer and becomes less important in moving to a sublayer further from the interface. Similarly, the temperature of the Boltzmann component decreases for sublayers further from the interface and approaches the 300 K temperature of the boundary. The temperature of the Boltzmann component decreases, but the importance of the non-Boltzmann component increases, as the sliding velocity is decreased. The temperature of the non-Boltzmann component is relatively insensitive to the sliding velocity. Friction forces are determined by calculating the energy dissipation during the sliding, and different regimes are found for variation in the friction force versus sliding velocity v(s) and applied load. For v(s) of 0.05, 0.5, and 5 m/s, the friction force is inversely proportional to v(s) reflecting the increased time for energy dissipation as v(s) is decreased. (C) 2005 American Institute of Physics.
机译:进行了非平衡分子动力学模拟,以研究在较小的纳米级羟基化α-氧化铝表面跨过相同材料的较大表面滑动的界面处的能量转移动力学。考虑了0.05、0.5、5和50 m / s的滑动速度以及0、0.0625、5、15、25和100 nN的载荷。对于这些条件中的每一种,在界面处都发现了非平衡能量分布。在滑动过程中,较小表面的子层中原子的速度分布P(v)振荡,反映了界面分子间电势的周期性。当对滑动进行平均时,每个子层的此P(v)都是具有Boltzmann和非Boltzmann分量的双峰。温度超过1000 K且高达2500 K的非玻尔兹曼分量对于界面H原子子层最重要,而在远离界面移动到子层时变得不那么重要。类似地,对于远离界面的子层,玻尔兹曼分量的温度降低,并接近边界的300 K温度。玻尔兹曼分量的温度降低,但是非玻尔兹曼分量的重要性随着滑动速度的降低而增加。非玻尔兹曼分量的温度对滑动速度相对不敏感。摩擦力是通过计算滑动过程中的能量消耗来确定的,并且发现了不同的摩擦力随滑动速度v(s)和施加载荷变化的状态。对于0.05、0.5和5 m / s的v(s),摩擦力与v(s)成反比,反映出随着v(s)的减小,耗能时间增加。 (C)2005美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号