首页> 外文期刊>The Journal of Chemical Physics >A mesoscopic model of nucleation and Ostwald ripening/stepping: Application to the silica polymorph system
【24h】

A mesoscopic model of nucleation and Ostwald ripening/stepping: Application to the silica polymorph system

机译:介观的成核和奥斯特瓦尔德熟化/步进模型:在二氧化硅多晶型体系中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Precipitation is modeled using a particle size distribution (PSD) approach for the single or multiple polymorph system. A chemical kinetic-type model for the construction of the molecular clusters of each polymorph is formulated that accounts for adsorption at a heterogeneous site, nucleation, growth, and Ostwald ripening. When multiple polymorphs are accounted for, Ostwald stepping is also predicted. The challenge of simulating the 23 order of magnitude in cluster size (monomer, dimer, ..., 10(23)-mer) is met by a new formalism that accounts for the macroscopic behavior of large clusters as well as the structure of small ones. The theory is set forth for the surface kinetic controlled growth systems and it involves corrections to the Lifshitz-Slyozov, Wagner (LSW) equation and preserves the monomer addition kinetics for small clusters. A time independent, scaled PSD behavior is achieved both analytically and numerically, and the average radius grows with R-ave proportional to t(1/2) law for smooth particles. Applications are presented for the silica system that involves five polymorphs. Effects of the adsorption energetics and the smooth or fractal nature of clusters on the nucleation, ripening, and stepping behavior are analyzed. The Ostwald stepping scenario is found to be highly sensitive to adsorption energetics. Long time scaling behavior of the PSD reveals time exponents greater than those for the classical theory when particles are fractal. Exact scaling solutions for the PSD are compared with numerical results to assess the accuracy and convergence of our numerical technique. (C) 2000 American Institute of Physics. [S0021-9606(00)70123-1]. [References: 23]
机译:对于单个或多个多晶型物系统,使用粒度分布(PSD)方法对降水进行建模。建立用于构造每个多晶型物分子簇的化学动力学类型模型,该模型考虑了异质位点的吸附,成核,生长和奥斯特瓦尔德成熟。当考虑多个多晶型物时,还可以预测奥斯特瓦尔德步进。新的形式主义解决了模拟大型簇的23个数量级(单体,二聚体,...,10(23)-mer)的挑战,这种新形式主义解释了大型簇的宏观行为以及小型簇的结构那些。该理论是针对表面动力学控制的生长系统提出的,涉及对Lifshitz-Slyozov,Wagner(LSW)方程的修正,并保留了小团簇的单体加成动力学。一个时间无关的,按比例缩放的PSD行为可以通过解析和数值方式获得,并且平均半径随R-ave与t(1/2)律成正比而增加,适用于光滑粒子。提出了涉及五个多晶型物的二氧化硅体系的应用。分析了吸附能和簇的光滑或分形性质对成核,成熟和步进行为的影响。发现Ostwald步进方案对吸附能学高度敏感。当粒子为分形时,PSD的长时间缩放行为揭示了比经典理论更大的时间指数。将PSD的精确缩放解决方案与数值结果进行比较,以评估我们数值技术的准确性和收敛性。 (C)2000美国物理研究所。 [S0021-9606(00)70123-1]。 [参考:23]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号