...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Hierarchical 3D ZnIn2S4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries
【24h】

Hierarchical 3D ZnIn2S4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries

机译:分层3D ZnIn2S4 /石墨烯纳米异质结构:它们的原位制造具有双重功能,可用于生产太阳能氢和用作锂离子电池的阳极

获取原文
获取原文并翻译 | 示例

摘要

Hierarchical 3D ZnIn2S4/graphene (ZnIn2S4/Gr) nano-heterostructures were successfully synthesized using an in-situ hydrothermal method. The dual functionality of these nano-heterostructures i.e. for solar hydrogen production and lithium ion batteries has been demonstrated for the first time. The ZnIn2S4/Gr nano-heterostructures were optimized by varying the concentrations of graphene for utmost hydrogen production. An inspection of the structure shows the existence of layered hexagonal ZnIn2S4 wrapped in graphene. The reduction of graphene oxide (GO) to graphene was confirmed by Raman and XPS analyses. The morphological analysis demonstrated that ultrathin ZnIn2S4 nanopetals are dispersed on graphene sheets. The optical study reveals the extended absorption edge to the visible region due to the presence of graphene and hence is used as a photocatalyst to transform H2S into eco-friendly hydrogen using solar light. The ZnIn2S4/Gr nano-heterostructure that is comprised of graphene and ZnIn2S4 in a weight ratio of 1 : 99 exhibits enhanced photocatalytically stable hydrogen production i.e. B6365 mmole h(-1) under visible light irradiation using just 0.2 g of nano-heterostructure, which is much higher as compared to bare hierarchical 3D ZnIn2(S4). The heightened photocatalytic activity is attributed to the enhanced charge carrier separation due to graphene which acts as an excellent electron collector and transporter. Furthermore, the usage of nano-heterostructures and pristine ZnIn2S4 as anodes in lithium ion batteries confers the charge capacities of 590 and 320 mA h g(-1) after 220 cycles as compared to their initial reversible capacities of 645 and 523 mA h g(-1), respectively. These nano-heterostructures show high reversible capacity, excellent cycling stability, and high-rate capability indicating their potential as promising anode materials for LIBs. The excellent performance is due to the nanostructuring of ZnIn2S4 and the presence of a graphene layer, which works as a channel for the supply of electrons during the charge-discharge process. More significantly, their dual functionality in energy generation and storage is quite unique and commendable.
机译:利用原位水热法成功地合成了3D层状ZnIn2S4 /石墨烯(ZnIn2S4 / Gr)纳米异质结构。首次证明了这些纳米异质结构的双重功能,即用于太阳能制氢和锂离子电池。 ZnIn2S4 / Gr纳米异质结构通过改变石墨烯的浓度进行了优化,以最大程度地产生氢气。对结构的检查表明存在包裹在石墨烯中的层状六角形ZnIn2S4。拉曼和XPS分析证实了氧化石墨烯(GO)还原为石墨烯。形态分析表明,超薄ZnIn2S4纳米花瓣分散在石墨烯片上。光学研究表明,由于存在石墨烯,吸收边缘扩展到了可见光区域,因此被用作光催化剂,利用太阳光将H2S转化为环保的氢。由重量比为1:99的石墨烯和ZnIn2S4组成的ZnIn2S4 / Gr纳米异质结构在可见光照射下仅使用0.2 g纳米异质结构,显示出增强的光催化稳定氢产生,即B6365 mmole h(-1)。与裸3D ZnIn2(S4)相比要高得多。增强的光催化活性归因于石墨烯的电荷载流子分离增强,石墨烯充当了出色的电子收集器和传输器。此外,使用纳米异质结构和原始ZnIn2S4作为锂离子电池的阳极,经过220次循环后,其初始充电容量为645和523 mA hg(-1),从而赋予590和320 mA hg(-1)的充电容量。 ), 分别。这些纳米异质结构显示出高可逆容量,出色的循环稳定性和高倍率容量,表明它们有潜力成为有前途的LIB负极材料。出色的性能归因于ZnIn2S4的纳米结构和石墨烯层的存在,该石墨烯层在充放电过程中充当了提供电子的通道。更重要的是,它们在能量产生和存储方面的双重功能非常独特,值得称赞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号