首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Nematic Director Reorientation at Solid and Liquid Interfaces under Flow: SAXS Studies in a Microfluidic Device
【24h】

Nematic Director Reorientation at Solid and Liquid Interfaces under Flow: SAXS Studies in a Microfluidic Device

机译:流动条件下固相和液相界面处的Nematic Director重定向:微流控设备中的SAXS研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of +/- 11 degrees in the velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen-Leslie-Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (90 and 0 degrees). The technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC displays.
机译:在这项工作中,我们研究了在微流体装置中,在流动和约束下,热致向列型液晶的取向场在流动和边界条件效应之间的相互作用。使用同步加速器小角度X射线散射(SAXS)进行了两种类型的实验。首先,向列液晶以不同的流速流过方通道横截面,而投射到速度/速度梯度平面上的向列指向矢方向则使用2D检测器进行测量。在中等到较高的流速下,向列导向器主要在流动方向上对齐,但在速度梯度方向上具有+/- 11度的小倾斜角。导向器倾斜角在整个通道宽度的大部分范围内都是恒定的,但与埃里克森-莱斯利-帕罗迪(ELP)理论一致,在穿过通道中心时会切换符号。在低流速下,边界条件开始占主导地位,并且观察到类似于逃逸的径向导向器配置的流量曲线,其中导向器从通道的边缘(垂直排列)到通道中心的变化更加平滑。在第二个实验中,采用流体动力学聚焦将向列相限制为夹在两层Triton X-100水溶液之间的液体片。向列平均指向矢方向从流动方向向液体边界移动了一定程度,尽管仍不清楚大多数向列片材中一个倾角是否占主导(边界附近突变),或者在两个方向之间倾角是否平滑变化。两个极限值(90度和0度)。本文介绍的技术可用于执行高通量测量,以评估不同表面活性剂对向列相取向的影响,并可能导致边界润滑等领域的进一步改进,并阐明液晶显示器中缺陷结构的性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号