首页> 外文期刊>NeuroImage >Optimized parallel transmit and receive radiofrequency coil for ultrahigh-field MRI of monkeys
【24h】

Optimized parallel transmit and receive radiofrequency coil for ultrahigh-field MRI of monkeys

机译:优化的平行发射和接收射频线圈,用于猴子的超高场MRI

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Monkeys are a valuable model for investigating the structure and function of the brain. To attain the requisite resolution to resolve fine anatomical detail and map localized brain activation requires radiofrequency (RF) coils that produce high signal-to-noise ratios (SNRs) both spatially (image SNR) and temporally. Increasing the strength of the static magnetic field is an effective method to improve SNR, yet this comes with commensurate challenges in RF coil design. First, at ultrahigh field strengths, the magnetic field produced by a surface coil in a dielectric medium is asymmetric. In neuroimaging of rhesus macaques, this complex field pattern is compounded by the heterogeneous structure of the head. The confluence of these effects results in a non-uniform flip angle, but more markedly, a suboptimal circularly polarized mode with reduced transmit efficiency. Secondly, susceptibility-induced geometric distortions are exacerbated when performing echo-planar imaging (EPI), which is a standard technique in functional studies. This requires receive coils capable of parallel imaging with low noise amplification during image reconstruction. To address these challenges at 7 T, this study presents a parallel (8-channel) transmit coil developed for monkey imaging, along with a highly parallel (24-channel) receive coil. RF shimming with the parallel-transmit coil produced significant advantages-the transmit field was 38% more uniform than a traditional circularly polarized mode and 54% more power-efficient, demonstrating that parallel-transmit coils should be used for monkey imaging at ultrahigh field strengths. The receive coil had the ability to accelerate along an arbitrary axis with at least a three-fold reduction factor, thereby reducing geometric distortions in whole-brain EPI. (C) 2015 Elsevier Inc. All rights reserved.
机译:猴子是研究大脑结构和功能的宝贵模型。为了获得必要的分辨率来解析精细的解剖细节并绘制局部大脑激活图,需要射频(RF)线圈在空间(图像SNR)和时间上均产生高信噪比(SNR)。增加静磁场强度是提高SNR的有效方法,但是在RF线圈设计中却面临着相应的挑战。首先,在超高场强下,介电介质中的表面线圈产生的磁场是不对称的。在恒河猴的神经成像中,这种复杂的场模式会因头部的异质结构而变得更加复杂。这些影响的汇合导致翻转角不均匀,但更明显的是,次优的圆偏振模具有降低的发射效率。其次,当执行回波平面成像(EPI)时,磁化率引起的几何变形会加剧,这是功能研究中的标准技术。这需要在图像重建期间能够以低噪声放大并行成像的接收线圈。为了解决7 T时的这些挑战,本研究提出了一种用于猴子成像的并行(8通道)发射线圈以及高度并行(24通道)接收线圈。带有平行发射线圈的射频匀场产生了显着的优势-发射场比传统的圆偏振模式均匀38%,功率效率高54%,这表明应将平行发射线圈用于超高场强的猴子成像。接收线圈具有以至少三倍的减小因子沿任意轴加速的能力,从而减少了全脑EPI的几何失真。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号