首页> 外文期刊>Analytical chemistry >(Almost) Stationary Isotachophoretic Concentration Boundary in a Nanofluidic Channel Using Charge Inversion
【24h】

(Almost) Stationary Isotachophoretic Concentration Boundary in a Nanofluidic Channel Using Charge Inversion

机译:(几乎)使用电荷反演的纳米流体通道中的固定等速电泳浓度边界

获取原文
获取原文并翻译 | 示例
       

摘要

The present work is an experimental study of a new means to induce a quasi-stationary boundary for concentration or separation in a nanochannel induced by charge inversion. Instead of using pressure-driven counter-flow to keep the front stationary, we exploit charge inversion by a highly charged electrolyte, Ru(bpy)(3)Cl-2, that changes the sign of the zeta potential in part of the channel from negative to positive. Having a non charge inverting electrolyte (MgCl2) in the other part of the channel and applying an electric field can create a standing front at the interface between them without added dispersion due to an externally applied pressure-driven counterflow. The resulting slow moving front position can be easily imaged optically since Ru(bpy)(3)Cl-2 is fluorescent. A simple analytical model for the velocity field and front axial position that reproduces the experimental location of the front shows that the location can be tuned by changing the concentration of the electrolytes (and thus local zeta potential). Both of these give the charge inversion-mediated boundary significant advantages over current methods of concentration and separation and the method is, therefore, of particular importance to chemical and biochemical analysis systems such as chromatography and separations and for enhancing the stacking performance of field amplified sample injection and isotachophoresis. By choosing a non-charge inverting electrolyte other than MgCl2, either this electrolyte or the Ru(bpy)(3)Cl-2 solution can be made to be the leading or trailing electrolyte.
机译:目前的工作是对一种新方法的实验研究,该新方法可诱导准静态边界以在电荷反转引起的纳米通道中进行浓缩或分离。我们没有使用压力驱动的逆流来保持前端静止,而是利用高电荷电解质Ru(bpy)(3)Cl-2进行电荷反转,该电解质将部分通道中zeta电位的符号从负面到正面。在通道的另一部分具有非电荷转化电解质(MgCl2)并施加电场可以在它们之间的界面处形成立式前沿,而不会由于外部施加的压力驱动逆流而增加分散性。由于Ru(bpy)(3)Cl-2是荧光的,因此可以很容易地对所得的缓慢移动的前部位置进行光学成像。一个简单的速度场和前轴向位置的解析模型可以再现前面板的实验位置,表明可以通过改变电解质的浓度(从而改变局部zeta电位)来调整位置。与目前的浓缩和分离方法相比,这两种方法都具有电荷反转介导的边界优势,因此该方法对于化学和生化分析系统(例如色谱和分离)以及增强现场扩增样品的堆叠性能特别重要注射和等速电泳。通过选择MgCl2以外的非电荷反转电解质,可以使该电解质或Ru(bpy)(3)Cl-2溶液成为前导电解质或尾随电解质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号