...
首页> 外文期刊>Analytical chemistry >High Temporal Resolution Detection of Patient-Specific Glucose Uptake from Human ex Vivo Adipose Tissue On-Chip
【24h】

High Temporal Resolution Detection of Patient-Specific Glucose Uptake from Human ex Vivo Adipose Tissue On-Chip

机译:从人体内脂肪组织芯片上的患者特定葡萄糖摄取的高时间分辨率检测

获取原文
获取原文并翻译 | 示例
           

摘要

Human tissue in vitro models on-chip are highly desirable to dissect the complexity of a physio-pathological in vivo response because of their advantages compared to traditional static culture systems in terms of high control of microenvironmental conditions, including accurate perturbations and high temporal resolution analyses of medium outflow. Human adipose tissue (hAT) is a key player in metabolic disorders, such as Type 2 Diabetes Mellitus (T2DM). It is involved in the overall energy homeostasis not only as passive energy storage but also as an important metabolic regulator. Here, we aim at developing a large scale microfluidic platform for generating high temporal resolution of glucose uptake profiles, and consequently insulin sensitivity, under physio-pathological stimulations in ex vivo adipose tissues from nondiabetic and T2DM individuals. A multiscale mathematical model that integrates fluid dynamics and an intracellular insulin signaling pathway description was used for assisting microfluidic design in order to maximize measurement accuracy of tissue metabolic activity in response to perturbations. An automated microfluidic injection system was included on-chip for performing precise dynamic biochemical stimulations. The temporal evolution of culture conditions could be monitored for days, before and after perturbation, measuring glucose concentration in the outflow with high temporal resolution. As a proof of concept for detection of insulin resistance, we measured insulin-dependent glucose uptake by hAT from nondiabetic and T2DM subjects, mimicking the postprandial response. The system presented thus represents an important tool in dissecting the role of single tissues, such as hAT, in the complex interwoven picture of metabolic diseases.
机译:芯片上的人体组织体外模型非常需要剖析生理病理学体内反应的复杂性,因为与传统的静态培养系统相比,它们在微环境条件的高度控制(包括精确的扰动和高时间分辨率分析)方面具有优势介质流出。人脂肪组织(hAT)是2型糖尿病(T2DM)等代谢异常的关键因素。它不仅作为被动能量存储,而且作为重要的代谢调节剂,参与了总体能量稳态。在这里,我们的目标是在来自非糖尿病和T2DM个体的离体脂肪组织中,在生理病理学刺激下,开发大规模的微流控平台,以产生高水平的葡萄糖摄取曲线,从而提高胰岛素敏感性。集成了流体动力学和细胞内胰岛素信号传导途径描述的多尺度数学模型用于辅助微流体设计,以最大程度地响应于微扰而对组织代谢活动进行测量。芯片上包括一个自动微流体注射系统,用于执行精确的动态生化刺激。可以在扰动前后的几天内监测培养条件的时间演变,以高时间分辨率测量流出液中的葡萄糖浓度。作为检测胰岛素抵抗的概念证明,我们测量了非糖尿病和T2DM受试者通过hAT进行的胰岛素依赖性葡萄糖摄取,模拟了餐后反应。因此,提出的系统代表了一种重要的工具,可以用来剖析诸如hAT的单个组织在代谢疾病复杂交织的画面中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号