首页> 外文期刊>Analytical chemistry >Backside calibration potentiometry: Ion activity measurements with selective supported liquid membranes by calibrating from the inner side of the membrane
【24h】

Backside calibration potentiometry: Ion activity measurements with selective supported liquid membranes by calibrating from the inner side of the membrane

机译:背面校准电位计:通过从膜内侧进行校准,使用选择性支持的液膜进行离子活度测量

获取原文
获取原文并翻译 | 示例
           

摘要

In direct potentiometry, the magnitude of the measured potentials is used to determine the composition of the sample. While this places rather formidable demands on the required reproducibility of the associated potential measurements, typically on the order of microvolts, in vitro clinical analyses of blood samples are today successfully performed with direct potentiometry using ion-selective electrodes (ISEs). Unfortunately, most other analytical situations do not permit the sensor to be recalibrated every few minutes, as in environmental monitoring or in vivo measurements, and direct potentiometry is often bound to fail as an accurate method in these circumstances. This paper introduces a novel direction for potentiometric sensing, termed backside calibration potentiometry. Chemical asymmetries across thin supported liquid ISE membranes are assessed by determining the direction of potential drift upon changing the stirring rate on either side of the membrane. Disappearance of this drift indicates the disappearance of concentration gradients across the membrane and is used to determine the sample composition if the solution composition at the backside of the membrane and the interfering ion concentration in the sample are known. For practical determinations, the concentration of either the primary or the interfering ion is varied in the reference solution until the stirring effect disappears. The procedure is demonstrated with a Ca2+-selective membrane using Ba2+ as the dominant interfering ion. Another example includes the determination of Pb2+ in environmental samples where the pH is adjusted to a known level. At pH 4.0, H+ turns out to be the dominant interfering ion. The practical applicability of the method is shown with different environmental water samples, for which the results obtained with the novel method are compared with those obtained by traditional calibration using standard additions. The limitations of the novel method in terms of accuracy and applicable concentration ranges are discussed.
机译:在直接电位计中,所测电位的大小用于确定样品的成分。尽管这对相关电位测量的可重复性提出了巨大的要求,通常为微伏量级,但如今,通过使用离子选择电极(ISE)的直接电位法已成功地进行了血液样本的体外临床分析。不幸的是,大多数其他分析情况不允许传感器每隔几分钟重新校准一次,如在环境监测或体内测量中一样,在这种情况下,直接电位计作为一种准确的方法通常注定会失败。本文介绍了一种电位计感测的新方向,称为背面校准电位计。通过确定改变膜两侧的搅拌速度时电位漂移的方向,可以评估支撑的薄液体ISE膜的化学不对称性。该漂移的消失表示整个膜上浓度梯度的消失,如果已知膜背面的溶液组成和样品中干扰离子的浓度,则可用于确定样品的组成。对于实际测定,在参考溶液中改变伯离子或干扰离子的浓度,直到搅拌效果消失为止。用以Ba2 +作为主要干扰离子的Ca2 +选择性膜证明了该程序。另一个例子包括测定环境样品中的Pb2 +,其中将pH值调节到已知水平。在pH 4.0下,H +成为主要的干扰离子。该方法在不同环境水样中的实际适用性得到了证明,将使用该新方法获得的结果与使用标准添加物通过传统校准获得的结果进行了比较。讨论了该新方法在准确性和适用浓度范围方面的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号