...
首页> 外文期刊>American Journal of Physiology >Scaffold topography alters intracellular calcium dynamics in cultured cardiomyocyte networks.
【24h】

Scaffold topography alters intracellular calcium dynamics in cultured cardiomyocyte networks.

机译:支架形貌改变了培养的心肌细胞网络中细胞内钙的动态。

获取原文
获取原文并翻译 | 示例

摘要

Structural and functional changes ensue in cardiac cell networks when cells are guided by three-dimensional scaffold topography. We report enhanced synchronous pacemaking activity in association with slow diastolic rise in intracellular Ca2+ concentration ([Ca2+]i) in cell networks grown on microgrooved scaffolds. Topography-driven changes in cardiac electromechanics were characterized by the frequency dependence of [Ca2+]i in syncytial structures formed of ventricular myocytes cultured on microgrooved elastic scaffolds (G). Cells were electrically paced at 0.5-5 Hz, and [Ca2+]i was determined using microscale ratiometric (fura 2) fluorescence. Compared with flat (F) controls, the G networks exhibited elevated diastolic [Ca2+]i at higher frequencies, increased systolic [Ca2+]i across the entire frequency range, and steeper restitution of Ca2+ transient half-width (n = 15 and 7 for G and F, respectively, P < 0.02). Significant differences in the frequency response of force-related parameters were also found, e.g., overall larger total area under the Ca2+ transients and faster adaptation of relaxation time to pacing rate (P < 0.02). Altered [Ca2+]i dynamics were paralleled by higher occurrence of spontaneous Ca2+ release and increased sarcoplasmic reticulum load (P < 0.02), indirectly assessed by caffeine-triggered release. Electromechanical instabilities, i.e., Ca2+ and voltage alternans, were more often observed in G samples. Taken together, these findings 1) represent some of the first functional electromechanical data for this in vitro system and 2) demonstrate direct influence of the microstructure on cardiac function and susceptibility to arrhythmias via Ca(2+)-dependent mechanisms. Overall, our results substantiate the idea of guiding cellular phenotype by cellular microenvironment, e.g., scaffold design in the context of tissue engineering.
机译:当细胞通过三维支架拓扑结构引导时,心脏细胞网络中就会发生结构和功能的变化。我们报告增强的同步起搏活动与细胞内Ca2 +浓度([Ca2 +] i)的舒张期缓慢上升有关,在微槽支架上生长的细胞网络中。心脏机电的地形驱动变化的特征是[Ca2 +] i在微槽弹性支架(G)上培养的心室肌细胞形成的合胞体结构中的频率依赖性。细胞以0.5-5 Hz的频率进行电起搏,并使用微量比例(荧光2)荧光测定[Ca2 +] i。与平面(F)控件相比,G网络在较高频率下显示出较高的舒张[Ca2 +] i,在整个频率范围内收缩[Ca2 +] i增加,并且Ca2 +瞬态半宽度的恢复陡峭(n = 15和7) G和F分别为P <0.02)。还发现了与力有关的参数的频率响应之间的显着差异,例如在Ca2 +瞬变下总体总面积更大,并且弛豫时间对起搏速度的适应性更快(P <0.02)。改变的[Ca2 +] i动态与更高的自发Ca2 +释放发生率和增加的肌浆网负载(P <0.02)平行,通过咖啡因触发释放来间接评估。在G样品中更经常观察到机电不稳定性,即Ca2 +和电压交替。综上所述,这些发现1)代表了该体外系统的一些第一功能机电数据,以及2)证明了微结构对心脏功能的直接影响以及通过Ca(2+)依赖性机制对心律不齐的敏感性。总的来说,我们的结果证实了通过细胞微环境指导细胞表型的想法,例如在组织工程的背景下设计支架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号