...
首页> 外文期刊>ACS applied materials & interfaces >Hollow Microgel Based Ultrathin Thermoresponsive Membranes for Separation, Synthesis, and Catalytic Applications
【24h】

Hollow Microgel Based Ultrathin Thermoresponsive Membranes for Separation, Synthesis, and Catalytic Applications

机译:中空的基于微凝胶的超薄热敏膜,用于分离,合成和催化应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Thermoresponsive core—shell microgels with degradable core are synthesized via surfactant based free radical polymerization using N,N'-(l,2-dihydroxy-ethylene)bis(acrylamide) (DHEA) as a cross-linker for core preparation. The 1,2-glycol bond present in DHEA is susceptible to NaIO4 solution, and thus, the structure can be cleaved off resulting in hollow microgel. Ultrathin membranes are prepared by suction filtration of a dilute suspension of core—shell microgels over a sacrificial layer of Cd(OH)2 nanostrand coated on track etched membrane. After removal of the degraded cores from microgels, the membranes are cross-linked with glutaraldehyde and the nanostrands are removed by passing a 10 mM HC1 solution. The prepared membranes are thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and dynamic contact angle for morphology, thermoresponsive, and hydrophilic properties, respectively. The prepared membranes showed thermoresponsive permeation behavior and remarkable separation performance for low molecular weight dyes and lysozyme protein. These membranes are also used to synthesize gold nanoparticles and immobilize lactate dehydrogenase enzyme for catalytic and biocatalytic application. The results for water permeation, solute rejection, and ability to immobilize gold nanoparticles and enzymes showed its wide range of applicability; Furthermore, the synthesis of hollow microgel is simple and environmentally friendly, and the membrane preparation is easy, scalable, and other microgel systems can also be used. These responsive membranes constitute a significant contribution to advanced separation technology.
机译:通过基于表面活性剂的自由基聚合反应,使用N,N'-(1,2-二羟基-乙烯)双(丙烯酰胺)(DHEA)作为交联剂制备核芯,制备具有可降解核芯的热敏核壳微凝胶。 DHEA中存在的1,2-乙二醇键易受NaIO4溶液影响,因此,该结构可被切割掉,从而形成空心微凝胶。超薄膜是通过将芯-壳微凝胶的稀悬液吸滤过涂覆在轨迹蚀刻膜上的Cd(OH)2纳米链牺牲层上而制成的。从微凝胶中除去降解的核后,将膜与戊二醛交联,并通过10 mM HCl溶液除去纳米链。使用扫描电子显微镜(SEM),原子力显微镜(AFM),动态光散射(DLS)和动态接触角分别对形态,热响应性和亲水性进行了彻底的表征。制备的膜显示出对低分子量染料和溶菌酶蛋白的热响应渗透行为和出色的分离性能。这些膜还用于合成金纳米颗粒并固定乳酸脱氢酶用于催化和生物催化应用。透水,溶质截留以及固定金纳米颗粒和酶的能力的结果表明了其广泛的适用性。此外,中空微凝胶的合成是简单且对环境友好的,并且膜制备容易,可扩展,并且也可以使用其他微凝胶系统。这些反应膜对先进的分离技术做出了重大贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号