首页> 外文期刊>Combustion, Explosion, and Shock Waves >Laminar Hydrocarbon Flame Structure
【24h】

Laminar Hydrocarbon Flame Structure

机译:层状烃火焰结构

获取原文
获取原文并翻译 | 示例
           

摘要

From the very first experimental studies, based essentially on flame propagation velocity and flame emission measurements, successive improvements in analytical and numerical techniques have contributed to make the analysis of laminar flame structure a powerful tool for extending the knowledge on combustion chemistry, thermodynamics, and transport properties. This better knowledge is very beneficial to design efficient combustion devices with reduced pollutant emission. Overall net species production rates are derived from the experimental determination of the evolution of the gas stream velocity, temperature, and species concentrations in the direction normal to the flame front. For species involved in a limited number of reactions, rate constants can be calculated at the next step. The development, in the early 1980s, of numerical codes for simulating the structure of one-dimensional laminar premixed flames the flame structure data to be directly used for validating detailed reaction mechanisms. Species analyses are still performed with techniques based on local gas sampling by probes, despite flame perturbations, but flame structure analyses have been markedly enriched by the use of non-intrusive spectroscopic techniques. The former allow the analysis of a large variety of species, and they have proven to be very well adapted to the large number of intermediate species formed in rich flames or in flames fed by heavy fuel molecules. The molecular beam mass spectrometry technique has been recently improved by the use of new photoionization sources that allow identification of isomers and extend the knowledge on intermediate species involved in formation of benzene, polycyclic aromatic hydrocarbons, and soot in flames. Amongst various spectroscopic techniques applied to flame structure analyses, laser-induced fluorescence has been largely used to perform accurate quantitative measurements of intermediate radicals that play a key role in the prompt-NO mechanism. In this study, the contribution of flame structure studies to a better knowledge of formation mechanisms of benzene and NO_x is briefly reviewed.
机译:从最初的实验研究开始,基本上基于火焰传播速度和火焰发射测量,分析和数值技术的连续改进使层流火焰结构的分析成为扩展燃烧化学,热力学和运输学知识的有力工具。属性。这些更好的知识对于设计减少污染物排放的高效燃烧设备非常有益。总体净物种产生速率来自实验确定的气流速度,温度和物种浓度沿垂直于火焰前沿方向的演变。对于参与有限数量反应的物质,可以在下一步计算速率常数。在1980年代初期,用于模拟一维层流预混火焰结构的数字代码的发展,将火焰结构数据直接用于验证详细的反应机理。尽管存在火焰扰动,但仍使用基于探针的局部气体采样的技术来进行物种分析,但是通过使用非侵入式光谱技术,火焰结构分析得到了显着的丰富。前者可以分析各种各样的物种,事实证明它们非常适合于浓火焰或重燃料分子供给的火焰中形成的大量中间物种。分子束质谱技术最近已通过使用新的光电离源得到了改进,该源可识别异构体并扩展了与火焰中苯,多环芳烃和烟灰形成有关的中间物种的知识。在用于火焰结构分析的各种光谱技术中,激光诱导的荧光已被广泛用于对中间基团进行准确的定量测量,这些中间基团在迅速NO机制中起着关键作用。在这项研究中,简要回顾了火焰结构研究对更好地了解苯和NO_x形成机理的贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号