...
首页> 外文期刊>Journal of the Geological Society of India >Texture, microstructure and geochemistry of magnetite from the Banduhurang uranium mine, Singhbhum Shear Zone, India - Implications for physico-chemical evolution of magnetite mineralization
【24h】

Texture, microstructure and geochemistry of magnetite from the Banduhurang uranium mine, Singhbhum Shear Zone, India - Implications for physico-chemical evolution of magnetite mineralization

机译:印度Singhbhum剪切带的Banduhurang铀矿的磁铁矿的织构,微观结构和地球化学-磁铁矿成矿的理化演化的意义

获取原文
获取原文并翻译 | 示例
           

摘要

The Singhbhum Shear Zone in eastern India is one of the largest repositories of uranium and copper in India. Besides uranium and copper, apatite-magnetite mineralization is widespread in this shear zone. This study aims at deciphering the physico-chemical evolution of magnetite mineralization in relation to progressive shearing integrating field relations, micro-textures, structures and compositions of magnetite in the Banduhurang uranium mine. Apatite-magnetite ores occur as discrete patches, tongues, and veins in the strongly deformed, fine grained quartzchlorite schist. Textures and microstructures of magnetite indicate at least three stages of magnetite formation. Coarsegrained magnetite (magnetite-1) with long, rotational, and complex strain fringes, defined by fibrous and elongate quartz, is assigned to a stage of pre-/early-shearing magnetite formation. Medium grained magnetite (magnetite-2), characterized by single non-rotational strain fringe equivalent to the youngest fringe of magnetite-1, grew likely at the mid-/late-stage of shearing. Fine grained magnetite (magnetite-3) is generally devoid of any pressure shadow. This indicates even a much later stage of formation of this magnetite, presumably towards the closing stage of shearing. Some of the magnetite-1 grains are optically heterogeneous with a dark, pitted Cr-Ti-bearing core overgrown by lighter, fresh rim locally containing pyrite, chalcopyrite, and chlorite inclusions. The cores are also locally characterized by high Al and Si content. Homogeneous magnetite-1 is optically and compositionally similar to the overgrowth of heterogeneous magnetite-1. This homogeneous magnetite-1 that grew as separate phase is contemporaneous with the overgrowth on pitted core of heterogeneous magnetite-1. Magnetite-2 is compositionally very similar to homogeneous magnetite-1, but is devoid of sulfide inclusion. Magnetite-3 is generally devoid of any silicate or sulfide inclusion and is most pure with least concentrations of trace/minor elements. The high Al and Si content in some magnetite can be explained by coupled substitution that involves substitution of Si~(4+) for Fe~(3+) in the tetrahedral sites and Fe ~(2+) for Fe~(3+) in the octahedral sites, with a simple substitution of Al~(3+) for Fe~(3+) in the octahedral sites. The mode of occurrences of apatite-magnetite ores indicates a predominantly hydrothermal origin of most magnetite. However, the Cr-Ti-bearing magnetite-1 cores and inferred mafic nature of the original protolith indicates that some magnetite was inherited from the original igneous rock. We propose that the pre-/early-shearing hydrothermal event of magnetite formation was associated with sulfide mineralization and alteration of existing magmatic magnetite. The second stage of magnetite formation at the mid-/late-stage of shearing was not associated with sulfide formation. Finally, fine-grained compositionally pure magnetite formed at the closing stage of shearing likely due to metamorphism of Fe-rich protolith.
机译:印度东部的Singhbhum剪切带是印度最大的铀和铜储存库之一。除铀和铜外,该剪切带还分布着磷灰石磁铁矿。这项研究旨在解释班杜胡朗铀矿中磁铁矿矿化的物理化学演化与渐进剪切的关系,包括场关系,微观结构,磁铁矿的结构和组成。磷灰石磁铁矿以离散的斑块,舌和脉的形式出现在强烈变形的细粒状绿泥石片岩中。磁铁矿的织构和微观结构表明至少有三个阶段的磁铁矿形成。具有长的,旋转的和复杂应变条纹的粗磨磁铁矿(磁铁矿1),由纤维状和细长的石英限定,被分配到预剪切/早剪切磁铁矿形成的阶段。具有中等晶粒度的磁铁矿(磁铁矿2)的特征是单一的非旋转应变条纹,相当于磁铁矿1的最细条纹,在剪切的中后期才可能生长。细粒磁铁矿(磁铁矿3)通常没有任何压力阴影。这表明该磁铁矿的形成阶段要晚得多,大概是在剪切的闭合阶段。某些磁铁矿1晶粒在光学上是非均质的,带有深色的,凹坑的含Cr-Ti的核,其周围长有较轻的新鲜边缘,局部含有黄铁矿,黄铜矿和绿泥石包裹体。芯的局部特征还在于高的Al和Si含量。均质磁铁矿1从光学和成分上类似于异质磁铁矿1的过度生长。这种作为独立相生长的均质磁铁矿1与异质磁铁矿1的孔核上的过度生长是同时的。磁铁矿2在成分上与均质磁铁矿1非常相似,但不含硫化物。磁铁矿3通常不含任何硅酸盐或硫化物,并且纯度最高,痕量/次要元素的含量最少。某些磁铁矿中高的Al和Si含量可以用偶合解释来解释,该偶合涉及四面体位置的Si〜(4+)代替Fe〜(3 +),Fe〜(2+)代替Fe〜(3+)。在八面体位点中,用Al〜(3+)代替八面体中的Fe〜(3+)。磷灰石-磁铁矿的发生模式表明大多数磁铁矿的主要热液成因。然而,含Cr-Ti的磁铁矿-1岩心和原始原生岩的推断铁镁质性质表明,某些磁铁矿是从原始火成岩继承而来的。我们认为磁铁矿形成的前/早剪切水热事件与硫化物矿化和现有岩浆磁铁矿的蚀变有关。剪切中后期的磁铁矿形成的第二阶段与硫化物的形成无关。最后,可能由于富铁原石的变质,在剪切的关闭阶段形成了细粒成分纯的磁铁矿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号