首页> 外文期刊>Journal of the American College of Cardiology >Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells.
【24h】

Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells.

机译:活体组织工程心脏瓣膜的微创植入:从自体血管细胞到干细胞的综合方法。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

OBJECTIVES: The aim of this study was to demonstrate the feasibility of combining the novel heart valve replacement technologies of: 1) tissue engineering; and 2) minimally-invasive implantation based on autologous cells and composite self-expandable biodegradable biomaterials. BACKGROUND: Minimally-invasive valve replacement procedures are rapidly evolving as alternative treatment option for patients with valvular heart disease. However, currently used valve substitutes are bioprosthetic and as such have limited durability. To overcome this limitation, tissue engineering technologies provide living autologous valve replacements with regeneration and growth potential. METHODS: Trileaflet heart valves fabricated from biodegradable synthetic scaffolds, integrated in self-expanding stents and seeded with autologous vascular or stem cells (bone marrow and peripheral blood), were generated in vitro using dynamic bioreactors. Subsequently, the tissue engineered heart valves (TEHV) were minimally-invasively implanted as pulmonary valve replacements in sheep. In vivo functionality was assessed by echocardiography and angiography up to 8 weeks. The tissue composition of explanted TEHV and corresponding control valves was analyzed. RESULTS: The transapical implantations were successful in all animals. The TEHV demonstrated in vivo functionality with mobile but thickened leaflets. Histology revealed layered neotissues with endothelialized surfaces. Quantitative extracellular matrix analysis at 8 weeks showed higher values for deoxyribonucleic acid, collagen, and glycosaminoglycans compared to native valves. Mechanical profiles demonstrated sufficient tissue strength, but less pliability independent of the cell source. CONCLUSIONS: This study demonstrates the principal feasibility of merging tissue engineering and minimally-invasive valve replacement technologies. Using adult stem cells is successful, enabling minimally-invasive cell harvest. Thus, this new technology may enable a valid alternative to current bioprosthetic devices.
机译:目的:本研究的目的是证明结合以下新的心脏瓣膜置换技术的可行性:1)组织工程; 2)基于自体细胞和复合材料自膨胀生物可降解生物材料的微创植入。背景:微创瓣膜置换术正迅速发展为瓣膜性心脏病患者的替代治疗选择。但是,当前使用的瓣膜替代物是生物修复的,因此耐久性有限。为了克服该限制,组织工程技术提供了具有再生和生长潜力的活体自体瓣膜替代物。方法:利用动态生物反应器在体外产生由可生物降解的合成支架制成的三叶瓣心脏瓣膜,该瓣膜整合在自膨胀支架中,并植入自体血管或干细胞(骨髓和外周血)。随后,将组织工程心脏瓣膜(TEHV)微创植入作为绵羊的肺动脉瓣置换物。通过超声心动图和血管造影评估长达8周的体内功能。分析了植入的TEHV和相应控制阀的组织组成。结果:所有动物均经心尖植入成功。 TEHV通过可移动但变厚的传单展示了体内功能。组织学显示具有内皮化表面的分层新组织。与天然瓣膜相比,第8周的细胞外基质定量分析显示,脱氧核糖核酸,胶原蛋白和糖胺聚糖的值更高。机械轮廓显示出足够的组织强度,但柔韧性较低,与细胞来源无关。结论:本研究证明了融合组织工程和微创瓣膜置换技术的主要可行性。成功使用成体干细胞,可实现微创细胞收获。因此,这项新技术可以为当前的生物修复设备提供有效的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号