...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Novel one-step gas-phase reaction synthesis of transition metal sulfide nanoparticles embedded in carbon matrices for reversible lithium storage
【24h】

Novel one-step gas-phase reaction synthesis of transition metal sulfide nanoparticles embedded in carbon matrices for reversible lithium storage

机译:嵌入碳基质中可逆锂存储的过渡金属硫化物纳米粒子的新型一步式气相反应合成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This report presents a novel one-step method based on the gas-phase reaction between metallocenes and sulfur for synthesizing the nanocomposites of transition metal sulfide nanoparticles embedded in carbon matrices (TMS@C). Various nanocomposites including FeS@C, Cr2S3@C and NiS2@C have been successfully synthesized by using ferrocene, chromocene and nickelocene, respectively. The SEM investigations evidence that the TMS nanoparticles are evenly distributed in the in situ formed carbon matrices, demonstrating that this novel method is an easy way to synthesize homogenous TMS-based nanocomposites with well-controlled nanostructures. As the anodes for lithium ion batteries (LIBs), the as-prepared TMS@C electrodes exhibit excellent rate capability and high reversible capacity. For example, a high reversible capacity of 550 and 480 mA h g(-1) can be retained for the FeS@C anode even after 350 cycles at a current density of 0.1 A g(-1) and 500 cycles at 0.5 A g(-1), respectively. The TEM investigations on the 100th discharged and recharged electrodes demonstrate superior structural stability against repeated lithiation/delithiation of the FeS@C. These impressive results indicate that this novel approach is a promising way to synthesize high-performance TMS electrodes for highly reversible lithium storage.
机译:该报告提出了一种基于茂金属与硫之间的气相反应的新颖的一步法,用于合成嵌入在碳基质中的过渡金属硫化物纳米粒子的纳米复合材料(TMS @ C)。分别使用二茂铁,二茂铬和新茂镍已成功合成了各种纳米复合材料,包括FeS @ C,Cr2S3 @ C​​和NiS2 @ C。 SEM研究证明,TMS纳米颗粒均匀地分布在原位形成的碳基质中,表明该新方法是合成具有良好控制的纳米结构且均质的基于TMS的纳米复合材料的简便方法。作为锂离子电池(LIB)的阳极,所制备的TMS @ C电极具有出色的倍率性能和高可逆容量。例如,即使在电流密度为0.1 A g(-1)的情况下进行350次循环以及在0.5 A g(( -1)。在第100个放电和充电电极上的TEM研究表明,FeS @ C的反复锂化/脱锂具有出色的结构稳定性。这些令人印象深刻的结果表明,这种新颖的方法是合成用于高度可逆锂存储的高性能TMS电极的有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号