...
首页> 外文期刊>Journal of Materials Processing Technology >Surface roughness measurement using an optical system
【24h】

Surface roughness measurement using an optical system

机译:使用光学系统进行表面粗糙度测量

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years there have been a number of research studies carried out into optical surface roughness measurement, since the optical method has several advantages over the mechanical measuring system. In the present study, an optical methodrelying on the reflected beam intensity profile is introduced. An He-Ne laser beam is used to scan the surface and a fibre optic probe is employed to collect the reflected beam from the workpiece surface. The reflected beam intensity distribution isapproximated by a Gaussian function. Since the data collection is sampled every 1 ms, a considerable number of profiles corresponding to each point at the workpiece surface are collected. However, for a known surface, there exists a unique average surface roughness value. Therefore, the data collected for each profile should be combined to produce a profile that represents the average surface roughness value for that particular surface. Consequently, the reflected beam intensity profile is processed usingtwo different methods, which are: (i) averaging the data points in the intensity profile before introducing the curve-fitting technique; and (ii) introducing curve fitting to obtain the constants for the Gaussian function for each intensity profile, thenaveraging the constants over the number of profiles. The surface roughness profiles and average surface roughness value (Ra) is measured initially using a Bendix surface proficoder. The relationship between Ra values and the standard deviation (S.D.) ofGaussian function (SDGF) is developed. The study is extended to include uncertainty analysis and standard estimate of errors in the measurement system. It is found that the first method gives an improved standard estimate of error. Moreover, a linearrelationship exists between the Ra values and the SDGF of the reflected beam intensity, the greater are the SDGF values the greater is the surface roughness. However, the measurement is limited to a certain range of Ra values; in this case, the accuracyof the measurement drops considerably as the Ra value increases beyond 1μm.
机译:近年来,由于光学方法相对于机械测量系统具有若干优点,因此已经对光学表面粗糙度测量进行了许多研究。在本研究中,介绍了一种基于反射光束强度分布的光学方法。 He-Ne激光束用于扫描表面,光纤探头用于收集工件表面的反射光束。反射光束强度分布由高斯函数近似。由于每1毫秒对数据收集进行一次采样,因此收集了与工件表面每个点相对应的大量轮廓。但是,对于已知的表面,存在唯一的平均表面粗糙度值。因此,应该将为每个轮廓收集的数据进行合并,以生成代表该特定表面的平均表面粗糙度值的轮廓。因此,使用两种不同的方法处理反射光束强度分布图:(i)在引入曲线拟合技术之前,对强度分布图中的数据点求平均; (ii)引入曲线拟合以获得每个强度分布的高斯函数常数,然后对分布数上的常数求平均值。首先使用Bendix表面Proficoder测量表面粗糙度轮廓和平均表面粗糙度值(Ra)。建立了Ra值与高斯函数(SDGF)的标准偏差(S.D.)之间的关系。研究扩展到包括不确定性分析和测量系统中误差的标准估计。发现第一种方法给出了改进的误差标准估计。而且,反射光束强度的Ra值和SDGF之间存在线性关系,SDGF值越大,表面粗糙度越大。但是,测量仅限于一定范围的Ra值。在这种情况下,当Ra值增加到1μm以上时,测量精度会大大下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号