首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Distinct layering in the hemispherical seismic velocity structure of Earth’s upper inner core
【24h】

Distinct layering in the hemispherical seismic velocity structure of Earth’s upper inner core

机译:地球上内核的半球地震速度结构中的不同分层

获取原文
获取原文并翻译 | 示例
       

摘要

The existence of hemispherical variation in the Earth’s inner core is well-documented, but consensus has not yet been reached on its detailed structure. The uppermost layers are a region of particular importance, as they are directly linked to the growth processes and post-solidification mechanisms of the inner core. Here, we use a large PKIKP-PKiKP differential travel time residual data set to derive a model for the upper inner core, providing new constraints on its isotropic and anisotropic velocity, and the amount of scattering. We find that the eastern and western hemisphere are separated by sharp boundaries. This is incompatible with the recently proposed inner core translation model, but might be explained by differences in outer core convection and inner core solidification rates. The eastern hemisphere displays weak anisotropy of 0.5%–1.0%. The western hemisphere, on the other hand, is characterized by the presence of an isotropic upper layer with a thickness of 57.5 km, with anisotropy of 2.8% appearing at deeper depths. The boundary between the isotropic layer and the deeper anisotropy appears sharp. We also detect, for the first time, a high velocity layer at the top of the eastern hemisphere with a thickness of 30 km, which we interpret as being due to an increased amount of light elements. There appears to be no relationship between the layered structure in the two hemispheres, with abrupt changes in velocity with depth in one hemisphere without any significant change at the same depth in the other hemisphere. Our results indicate that there is a difference in composition and mineral structure between the hemispheres, resulting in differing responses to external processes.
机译:有充分的证据证明地球内核存在半球变化,但尚未就其详细结构达成共识。最上层是特别重要的区域,因为它们直接与内芯的生长过程和后固化机制相关。在这里,我们使用较大的PKIKP-PKiKP差分行进时间残差数据集来推导上部内核的模型,从而对其上各向同性和各向异性的速度以及散射量提供了新的约束。我们发现,东半球和西半球被尖锐的边界隔开。这与最近提出的内芯平移模型不兼容,但是可以用外芯对流和内芯凝固速率的差异来解释。东半球显示出0.5%–1.0%的弱各向异性。另一方面,西半球的特征是存在厚度为57.5 km的各向同性上层,在较深的深度出现了2.8%的各向异性。各向同性层和更深的各向异性之间的边界显得很清晰。我们还首次检测到东半球顶部的高速层,其厚度为30 km,我们认为这是由于增加了轻元素。在两个半球的分层结构之间似乎没有关系,一个半球的速度随深度而突然变化,而在另一个半球的相同深度处没有任何明显的变化。我们的结果表明,半球之间的成分和矿物结构存在差异,从而导致对外部过程的响应不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号