首页> 外文期刊>Journal of Fuel Cell Science and Technology >Simulation of the Postcombustor for the Treatment of Toxic and Flammable Exhaust Gases of a Micro-Solid Oxide Fuel Cell
【24h】

Simulation of the Postcombustor for the Treatment of Toxic and Flammable Exhaust Gases of a Micro-Solid Oxide Fuel Cell

机译:后燃烧器处理微固态氧化物燃料电池有毒和可燃气体的模拟

获取原文
获取原文并翻译 | 示例
       

摘要

This work investigates numerically a catalytic postcombustor for a micro-solid oxide fuel cell (SOFC) system. The postcombustor oxidizes toxic and explosive carbon monoxide (CO) and hydrogen exiting a solid oxide fuel cell to carbon dioxide and water. A single 1 mm diameter monolith reactor channel coated with platinum catalyst is modeled in this work. The inlet stream composition is provided by a semi-analytical 2D model of a detailed SOFC system. The model of the postcombustor includes the 2D axisymmetric Navier-Stokes equations, heat conduction in the channel wall, and a multistep finite-rate mechanism for the surface reactions. It is shown that under the operation conditions considered, the influence of homogeneous (gas phase) reactions can be neglected. The model predicts the expected adiabatic temperatures at the postcombustor outlet correctly and can be used for dimensioning and optimization. Postcombustor performance varies significantly with the choice of the operating parameters of the fuel cell. The most critical molecule at the SOFC outlet is shown to be CO because its depletion is slower than that of H_2 for the entire operating range of the SOFC. It can be shown that the postcombustor is able to reduce the level of CO below the toxicity threshold of 25 ppm. Although higher voltages of the fuel cell lead to faster CO conversion in the postcombustor, they also result in a significant increase in wall temperature of the catalyst device. Furthermore, the percentage of SOFC power output used for pump work is lowest for the voltage where the maximum power is reached. For postcombustion the optimal operation point of the SOFC is at the voltage for maximum power of the SOFC system.
机译:这项工作在数值上研究了微固体氧化物燃料电池(SOFC)系统的催化后燃烧器。后燃烧器将有毒且易爆的一氧化碳(CO)和氢从固体氧化物燃料电池中排出,将其氧化为二氧化碳和水。在这项工作中模拟了一个直径为1 mm的单层反应器通道,该通道涂覆有铂催化剂。入口流组成由详细的SOFC系统的半分析2D模型提供。后燃烧器的模型包括二维轴对称Navier-Stokes方程,通道壁中的热传导以及表面反应的多步有限速率机制。结果表明,在所考虑的操作条件下,均相(气相)反应的影响可以忽略。该模型可正确预测燃烧器后出口处的预期绝热温度,并可用于尺寸确定和优化。燃烧器的性能随燃料电池工作参数的选择而显着变化。在SOFC出口处最关键的分子显示为CO,因为在SOFC的整个工作范围内,其消耗都比H_2的消耗慢。可以证明,后燃烧器能够将CO的水平降低到25 ppm的毒性阈值以下。尽管燃料电池的较高电压导致后燃烧器中的CO转化更快,但它们也导致催化剂装置壁温的显着升高。此外,对于达到最大功率的电压,用于泵工作的SOFC功率输出百分比最低。对于后燃烧,SOFC的最佳工作点为SOFC系统最大功率的电压。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号