...
首页> 外文期刊>Journal of Experimental Botany >Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway.
【24h】

Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway.

机译:传播新闻:韧皮部途径中Ca 2 + 信号的系统传播和局部影响。

获取原文
获取原文并翻译 | 示例

摘要

We explored the idea of whether electropotential waves (EPWs) primarily act as vehicles for systemic spread of Ca2+ signals. EPW-associated Ca2+ influx may trigger generation and amplification of countless long-distance signals along the phloem pathway given the fact that gating of Ca2+-permeable channels is a universal response to biotic and abiotic challenges. Despite fundamental differences, both action and variation potentials are associated with a sudden Ca2+ influx. Both EPWs probably disperse in the lateral direction, which could be of essential functional significance. A vast set of Ca2+-permeable channels, some of which have been localized, is required for Ca2+-modulated events in sieve elements. There, Ca2+-permeable channels are clustered and create so-called Ca2+ hotspots, which play a pivotal role in sieve element occlusion. Occlusion mechanisms play a central part in the interaction between plants and phytopathogens (e.g. aphids or phytoplasmas) and in transient re-organization of the vascular symplasm. It is argued that Ca2+-triggered systemic signalling occurs in partly overlapping waves. The forefront of EPWs may be accompanied by a burst of free Ca2+ ions and Ca2+-binding proteins in the sieve tube sap, with a far-reaching impact on target cells. Lateral dispersion of EPWs may induce diverse Ca2+ influx and handling patterns (Ca2+ signatures) in various cell types lining the sieve tubes. As a result, a variety of cascades may trigger the fabrication of signals such as phytohormones, proteins, or RNA species released into the sap stream after product-related lag times. Moreover, transient reorganization of the vascular symplasm could modify cascades in disjunct vascular cells.
机译:我们探讨了电势波(EPW)是否主要充当Ca 2 + 信号系统传播的媒介的想法。鉴于Ca 2 + 渗透通道的门控是一个事实,与EPW相关的Ca 2 + 涌入可能触发沿韧皮部路径的无数长距离信号的产生和放大。对生物和非生物挑战的普遍反应。尽管存在根本差异,但动作电位和变异电位均与突然的Ca 2 + 涌入有关。两种EPW都可能在横向分散,这可能具有重要的功能意义。大量Ca 2 + 可渗透通道,其中一些已被定位,是筛分元素中Ca 2 + 调节事件所必需的。在那里,Ca 2 + 渗透通道被聚集并形成所谓的Ca 2 + 热点,这些热点在筛分元素阻塞中起着关键作用。阻塞机制在植物和植物病原体(例如蚜虫或植物原质)之间的相互作用以及血管共生体的瞬时重组中起着中心作用。有人认为Ca 2 + 触发的系统性信号发生在部分重叠的波中。 EPW的最前沿可能伴随着筛管树液中大量游离的Ca 2 + 离子和Ca 2 + 结合蛋白的爆发,其影响深远。靶细胞。 EPW的横向分散可能会导致在筛管内衬的各种细胞类型中出现多种Ca 2 + 涌入和处理方式(Ca 2 + 特征)。结果,在产物相关的滞后时间后,各种级联反应可能触发信号生成,例如植物激素,蛋白质或RNA物质释放到树液流中。此外,血管共生体的瞬时重组可以修饰分离的血管细胞中的级联反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号