首页> 外文期刊>Chemical geology >Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study
【24h】

Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study

机译:含锂十字沸石,锂云母和水流体之间锂同位素分馏的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

We determined the lithium isotope fractionation between synthetic Li-staurolite and aqueous fluids containing excess LiCl or LiOH at 3.5 GPa between 670 and 880 degrees C and between Li-mica and similar fluids at 2.0 GPa and 300 to 500 degrees C. In all experiments for the system Li-staurolite-fluid, Li-7 was weakly partitioned into Li-staurolite, whereas for Li-mica-fluid, Li-7 preferentially fractionated into the fluid. The difference in the Li-isotope fractionation behaviour results from different Li-coordination in staurolite (Li-[4]) and mica (Li-[6]). For the system Li-mica-fluid, fractionation is about half as large along the same T-range as for spodumene-fluid [Wunder, B., Meixner, A., Romer, R.L., Heinrich, W., 2006. T-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib. Mineral. Petrol. 151, 112-120]. This behaviour is consistent with differences in the bonding strengths of the Li-octahedra in Li-mica and spodumene. Subduction and concomitant dehydration of metabasic oceanic crust, containing chlorite and clinopyroxene with Li in six-fold coordination, releases fluids enriched in Li and Li-7 into the fore-arc and arc mantle and thus introduces a light Li-component into the deeper mantle. Ongoing dehydration and Li-loss along the subduction path produces fluids with increasingly lower Li-concentrations and lighter lithium isotope compositions. However, as staurolite is the most important carrier of Li in metapelitic assemblages, the inverse fractionation of Li-isotopes relative to fluids enables staurolite to transport high Li-concentrations in combination with an isotopic composition enriched in Li-7 into the mantle. Thus, depending on the Li-contents and Li-isotope signature of the protolite, breakdown of Li-bearing staurolite at high P and T can release fluids with high Li-contents and isotopically heavy Li into the deep mantle wedge. (c) 2006 Elsevier B.V. All rights reserved.
机译:我们确定了锂锂人造石与在670至880摄氏度之间在3.5 GPa下含有过量LiCl或LiOH的水性液体之间以及锂云母与在2.0 GPa和300至500摄氏度下在类似云母液体之间的锂同位素分馏。 Li-星形胶石-流体系统Li-7被弱地划分为Li-星形胶石,而对于Li-云母-流体,Li-7则优先进入流体。 Li同位素分馏行为的差异是由于在星形石(Li- [4])和云母(Li- [6])中不同的Li配位导致的。对于锂云母流体系统,沿着相同的T范围,与锂辉石流体相比,分馏率约为一半[Wunder,B.,Meixner,A.,Romer,RL,Heinrich,W.,2006. T-环吡咯和高压含水流体之间锂的同位素分馏贡献。矿物。汽油。 151,112-120]。此行为与Li-八面体在Li-云母和锂辉石中的结合强度差异一致。含亚氯酸盐和次氯亚py基与Li的六重配位的变质海底壳的俯冲和伴随脱水,将富含Li和Li-7的流体释放到前弧和弧形地幔中,从而将较轻的Li组分引入到更深的地幔中。沿俯冲路径的持续脱水和锂损失产生的锂浓度越来越低,锂同位素组成更轻。然而,由于星形胶质岩是成岩组合中最重要的Li载体,因此Li同位素相对于流体的反向分馏使星形胶岩能够将高浓度的Li与富含Li-7的同位素组成一起运入地幔。因此,取决于原生质岩的锂含量和锂同位素特征,高P和T下含锂的恒沸石的分解会释放出高Li含量和同位素重的Li流体到深地幔楔中。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号