首页> 外文期刊>Surface Engineering >Fatigue crack growth mechanisms in Al-Si-Mg alloys
【24h】

Fatigue crack growth mechanisms in Al-Si-Mg alloys

机译:Al-Si-Mg合金的疲劳裂纹扩展机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Owing to the increasing use of cyclically loaded cast aluminium components in automotive and aerospace applications, the fatigue and fatigue crack growth characteristics of aluminium castings are of great interest. Despite the extensive research efforts dedicated to this topic, a fundamental, mechanistic understanding of these alloys' behaviour tvfaen subjected to dynamic loading is still lacking. The present research investigates the mechanisms active at the microstructure level during dynamic loading and failure of Al-Si-Mg alloys. Five model alloys were cast to isolate the contribution of constituent phases on fatigue -resistance. The major constituent phases, a-Al dendrites, Al/Si eutectic phase, and Mg-Si strengthening precipitates were mechanistically investigated to relate microstructure to near-threshold crack growth DELTA K_(th) and crack propagation regimes (regions II and III) for alloys of different Si composition/ morphology, grain size, (secondary dendrite arm spacing) SDAS and heat treatment. A procedure to evaluate the actual fracture toughness from fatigue crack growth data has been successfully developed based on a complex elastic plastic fracture mechanics (EPFM/J-integral) approach. Residual stress-niicrostructure interactions, commonly overlooked by researchers in the field, are also comprehensively defined and accounted for both experimentally and mathematically. Revisions of ASTM E647 are in progress.
机译:由于在汽车和航空航天应用中越来越多地使用循环负载铸铝部件,因此铝铸件的疲劳和疲劳裂纹扩展特性引起了人们的极大兴趣。尽管为此主题进行了广泛的研究,但仍缺乏对这些合金在动态载荷下的行为的基本机械理解。本研究调查了在动态加载和破坏Al-Si-Mg合金过程中在微观结构水平上起作用的机理。铸造了五种模型合金,以隔离组成相对抗疲劳性的贡献。机械研究了主要组成相,a-Al枝晶,Al / Si共晶相和Mg-Si强化析出物,使显微组织与近阈值裂纹扩展DELTA K_th和裂纹扩展机制(II和III区)有关硅组成/形态,晶粒尺寸,(二次枝晶臂间距)SDAS和热处理的合金。已基于复杂的弹塑性断裂力学(EPFM / J-integral)方法成功开发了一种根据疲劳裂纹扩展数据评估实际断裂韧性的方法。本领域研究人员通常忽略的残余应力-微结构相互作用也得到了全面定义,并在实验和数学上得到了解释。 ASTM E647的修订正在进行中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号