...
首页> 外文期刊>The Journal of Experimental Biology >Scaling of maximum net force output by motors used for locomotion
【24h】

Scaling of maximum net force output by motors used for locomotion

机译:运动用电动机输出的最大净力的比例

获取原文
获取原文并翻译 | 示例

摘要

Biological and engineered motors are surprisingly similar in their adherence to two or possibly three fundamental regimes for the mass scaling of maximum force output (Fmax). One scaling regime (Group 1: myosin, kinesin, dynein and RNA polymerase molecules; muscle cells; whole muscles; winches; linear actuators) comprises motors that create slow translational motion with force outputs limited by the axial stress capacity of the motor, which results in Fmax scaling as motor mass0.67 (M0.67). Another scaling regime (Group 2: flying birds, bats and insects; swimming fish; running animals; piston engines; electric motors; jets) comprises motors that cycle rapidly, with significant internal and external accelerations, and for whom inertia and fatigue life appear to be important constraints. The scaling of inertial loads and fatigue life both appear to enforce Fmax scaling as M1.0 in these motors. Despite great differences in materials and mechanisms, the mass specific Fmax of Group 2 motors clusters tightly around a mean of 57 N kg(-1), a region of specific force loading where there appears to be a common transition from high- to low-cycle fatigue. For motors subject to multi-axial stresses, the steepness of the load-life curve in the neighborhood of 50-100 N kg(-1) may overwhelm other material and mechanistic factors, thereby homogenizing the mass specific Fmax of grossly dissimilar animals and machines. Rockets scale with Group 1 motors but for different mechanistic reasons; they are free from fatigue constraints and their thrust is determined by mass flow rates that depend on cross sectional area of the exit nozzle. There is possibly a third scaling regime of Fmax for small motors (bacterial and spermatazoan flagella; a protozoan spring) where viscosity dominates over inertia. Data for force output of viscous regime motors are scarce, but the few data available suggest a gradually increasing scaling slope that converges with the Group 2 scaling relationship at a Reynolds number of about 10(2). The Group 1 and Group 2 scaling relationships intersect at a motor mass of 4400 kg, which restricts the force output and design of Group 2 motors greater than this mass. Above 4400 kg, all motors are limited by stress and have Fmax that scales as M0.67; this results in a gradual decline in mass specific Fmax at motor mass greater than 4400 kg. Because of declining mass specific Fmax, there is little or no potential for biological or engineered motors or rockets larger than those already in use.
机译:对于最大力输出(Fmax)的质量缩放,生物电机和工程电机在遵守两个或可能三个基本机制方面具有惊人的相似性。一种缩放方案(第1组:肌球蛋白,驱动蛋白,动力蛋白和RNA聚合酶分子;肌肉细胞;整个肌肉;绞车;线性致动器)包括产生缓慢平移运动的电机,其力输出受电机轴向应力能力的限制。以Fmax标度表示为电机质量0.67(M0.67)。另一个缩放方式(第2组:飞鸟,蝙蝠和昆虫;游泳的鱼;奔跑的动物;活塞引擎;电动机;喷气机)包括快速循环的电动机,具有明显的内部和外部加速度,并具有惯性和疲劳寿命是重要的约束。在这些电动机中,惯性负载和疲劳寿命的缩放比例似乎都强制将Fmax缩放比例设为M1.0。尽管材料和机理存在很大差异,但第2组电动机的质量比Fmax紧密聚集在平均57 N kg(-1)左右,这是一个比力负载区域,在该区域中通常会出现从高到低的过渡。循环疲劳。对于承受多轴应力的电机,负载寿命曲线的陡度在50-100 N kg(-1)附近可能会淹没其他材料和机械因素,从而使完全不同的动物和机器的质量比Fmax均匀化。火箭可以通过第1组电动机进行缩放,但是出于不同的机械原因。它们不受疲劳限制,其推力由质量流量决定,质量流量取决于出口喷嘴的横截面积。对于小型电动机(细菌和精子鞭毛;原生动物的弹簧),可能存在第三种Fmax缩放比例,在这种情况下,粘度占主导地位,而不是惯性。粘性状态马达的力输出数据很少,但是可用的少数数据表明比例斜率逐渐增加,并且在雷诺数约为10(2)时与Group 2比例关系收敛。第1组和第2组缩放比例关系在电动机质量为4400 kg时相交,这限制了第2组电动机的力输出和设计大于此质量。超过4400千克时,所有电动机都受到应力的限制,并且Fmax缩放为M0.67。当马达质量大于4400 kg时,这会导致质量比Fmax逐渐降低。由于质量比Fmax的下降,比已使用的更大的生物或工程用发动机或火箭几乎没有潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号