...
首页> 外文期刊>The Journal of Physiology >Second coiled-coil domain of KCNQ channel controls current expression and subfamily specific heteromultimerization by salt bridge networks.
【24h】

Second coiled-coil domain of KCNQ channel controls current expression and subfamily specific heteromultimerization by salt bridge networks.

机译:KCNQ通道的第二个螺旋线圈结构域通过盐桥网络控制当前的表达和亚家族特异性异源多聚化。

获取原文
获取原文并翻译 | 示例

摘要

KCNQ channels carry the slowly activating, voltage-dependent M-current in excitable cells such as neurons. Although the KCNQ2 homomultimer can form a functional voltage-gated K(+) channel, heteromultimerization with KCNQ3 produces a > 10-fold increase in current amplitude. All KCNQ channels contain double coiled-coil domains (TCC1 and TCC2, or A-domain Head and Tail), of which TCC2 (A-domain Tail) is thought to be important for subunit recognition, channel assembly and surface expression. The mechanism by which TCC2 recognizes and associates with its partner is not fully understood, however. Our aim in the present study was to elucidate the recognition mechanism by examining the phenotypes of TCC2-deletion mutants, TCC2-swapped chimeras and point mutants. Electrophysiological analysis using Xenopus oocytes under two-electrode voltage clamp revealed that homotetrameric KCNQ3 TCC2 is a negative regulator of current expression in the absence of KCNQ2 TCC2. Recent structural analysis of KCNQ4 TCC2 revealed the presence of intercoil salt bridge networks. We therefore swapped the sign of the charged residues reportedly involved in the salt bridge formation and functionally confirmed that the intercoil salt bridge network is responsible for the subunit recognition between KCNQ2 and KCNQ3. Finally, we constructed TCC2-swapped KCNQ2/KCNQ3 mutants with KCNQ1 TCC2 or GCN4-pLI, a coiled-coil domain from an unrelated protein, and found that TCC2 is substitutable and even GCN4-pLI can work as a substitute for TCC2. Our present data provide some new insights into the role played by TCC2 during current expression, and also provide functional evidence of the importance of the intercoil salt bridge network for subunit recognition and coiled-coil formation, as is suggested by recent crystallographic data.
机译:KCNQ通道在神经细胞等可激发细胞中携带缓慢激活的电压依赖性M电流。尽管KCNQ2同型多聚体可以形成功能性的电压门控K(+)通道,但与KCNQ3进行异源多聚化会使电流幅度增加> 10倍。所有KCNQ通道均包含双螺旋线圈结构域(TCC1和TCC2,或A域头尾),其中TCC2(A域尾部)被认为对亚基识别,通道组装和表面表达很重要。但是,TCC2识别并与其伙伴关联的机制尚未完全了解。我们在本研究中的目的是通过检查TCC2缺失突变体,TCC2交换嵌合体和点突变体的表型来阐明识别机制。使用非洲爪蟾卵母细胞在两电极电压钳下的电生理分析表明,在没有KCNQ2 TCC2的情况下,同源四聚体KCNQ3 TCC2是电流表达的负调节剂。最近对KCNQ4 TCC2的结构分析表明存在线圈间盐桥网络。因此,我们交换了据报道参与盐桥形成的带电残基的符号,并在功能上确认了线圈间盐桥网络负责KCNQ2和KCNQ3之间的亚基识别。最后,我们用KCNQ1 TCC2或GCN4-pLI(来自无关蛋白的卷曲螺旋结构域)构建了TCC2交换的KCNQ2 / KCNQ3突变体,发现TCC2是可取代的,甚至GCN4-pLI也可以代替TCC2。我们目前的数据为TCC2在当前表达过程中的作用提供了一些新见解,也提供了功能性证​​据,证明了线圈间盐桥网络对于亚基识别和卷曲螺旋形成的重要性,正如最近晶体学数据所表明的那样。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号