...
首页> 外文期刊>Protoplasma: An International Journal of Cell Biology >The alpha-helix, an overlooked molecular motor
【24h】

The alpha-helix, an overlooked molecular motor

机译:α-螺旋,一个被忽视的分子马达

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

At first sight the alpha-helix appears as a rigid scaffold braced by hydrogen bonds nearly parallel to the helix axis. Looked at more closely it turned out to be highly dynamic and able to transform chemical into mechanical energy. The hydrogen bonds are fairly weak and compliant bonds. Their length, usually between 0.267 and 0.291 nm ( mean value, 0.28 nm), depends on the interaction of the side chains. The most important strong interaction is the electrostatic repelling force between equally charged side chains ( Glu(-), Asp(-), Lys(-), Arg(-)), well known by experiments with polyamino acids. In proteins with different amino acids, repelling forces between charged side chains work in the axial direction and stretch the hydrogen bonds. Extreme shortening of the hydrogen bonds occurs when ions, e. g., Ca2+, H+, or PO3-, are added and discharge side chains. This means a cooperative pitch decrease of the alpha-helix ( pitch range between 0.52 and more than 0.55 nm; mean value, 0.54 nm). This pitch change is absolutely connected by steric reasons with torque generation and torsional rotations, as demonstrated by molecular and tubular alpha-helix models. Thus, charged alpha-helices are molecular motors propelled by the electrostatic energy of added ions. The motor effect is most striking with highly charged alpha-helical coiled coils, e. g., tropomyosin, myosin, and alpha-actinin that can rotate actin filaments by winding and unwinding. For example, the shortening of muscle depends on the sliding ( drilling) motion of the Ca2+-activated helical actin filaments into the cross-bridges of the A-band. Here, models are presented for the in vitro sliding of actin filaments and for cytoplasmic streaming by winding and unwinding of myosin chains, and for membrane proteins that contain nonhelical domains between membrane-penetrating alpha-helices. They may transport molecules by the described torsional rotations if they perform supercoiling. Winding and supercoiling can lead to displacement of bound ions and to a feedback-regulated oscillation between two different coiling stages E-1 and E-2 that explain "eversion". The models need the torque for 1-2 rotations. They explain active and passive transports, the driving-effects of ion gradients, ATP hydrolysis by unwinding, ATP synthesis by winding up of the supercoils, etc.
机译:乍一看,α-螺旋表现为由几乎平行于螺旋轴的氢键支撑的刚性支架。仔细观察,结果发现它是高度动态的,能够将化学物质转化为机械能。氢键相当弱且是顺应性键。它们的长度通常在0.267至0.291 nm(平均值为0.28 nm)之间,取决于侧链的相互作用。最重要的强相互作用是等电荷侧链(Glu(-),Asp(-),Lys(-),Arg(-))之间的静电排斥力,这是通过聚氨基酸实验而众所周知的。在具有不同氨基酸的蛋白质中,带电侧链之间的排斥力沿轴向作用并拉伸氢键。氢离子的极度缩短发生在离子,例如离子。加入例如Ca 2+,H +或PO 3-并排出侧链。这意味着α-螺旋的协同节距减小(节距范围介于0.52和大于0.55 nm之间;平均值为0.54 nm)。如分子和管状α-螺旋模型所示,由于空间原因,这种螺距变化绝对与扭矩生成和扭转旋转有关。因此,带电的α螺旋是由添加离子的静电能推动的分子电动机。带高电荷的α螺旋线圈,例如电机,其电机效果最为显着。例如,原肌球蛋白,肌球蛋白和α-肌动蛋白可以通过缠绕和展开来旋转肌动蛋白丝。例如,肌肉的缩短取决于Ca2 +激活的螺旋肌动蛋白丝进入A波段交叉桥的滑动(钻孔)运动。在这里,提出了肌动蛋白丝的体外滑动和通过缠绕和展开肌球蛋白链的胞质流模型,以及在穿透膜的α螺旋之间包含非螺旋结构域的膜蛋白的模型。如果它们执行超螺旋,它们可能会通过所述的扭转旋转来运输分子。缠绕和超螺旋会导致结合离子的位移,并导致两个解释“外翻”的不同螺旋阶段E-1和E-2之间的反馈调节振荡。模型需要1-2转的扭矩。他们解释了主动和被动的传输,离子梯度的驱动效应,通过展开而产生的ATP水解,通过超螺旋的展开而产生的ATP合成等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号