...
首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >The use of D-optimal design for modeling and analyzing the vibration and surface roughness in the precision turning with a diamond cutting tool
【24h】

The use of D-optimal design for modeling and analyzing the vibration and surface roughness in the precision turning with a diamond cutting tool

机译:使用D最佳设计对金刚石切削刀具在精密车削中的振动和表面粗糙度进行建模和分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Using a diamond cutting tool in the precision turning process, the vibration of tool-tip has an undesirable effect on the machined surface's quality. The objective of this paper is to present the mathematical models for modeling and analyzing the vibration and surface roughness in the precision turning with a diamond cutting tool. Machining parameters including the spindle speed, feed rate and cutting depth were chosen as numerical factor, and the status of lubrication was regarded as the categorical factor. An experimental plan of a four-factor's (three numerical plus one categorical) D-optimal design based on the response surface methodology was employed to carry out the experimental study. A micro-cutting test is conducted to visualize the effect of vibration of tool-tip on the performance of surface roughness. With the experimental values up to a 95% confidence interval, it is fairly well for the experimental results to present the mathematical models of the vibration and surface roughness. Results show that the spindle speed and the feed rate have the greatest influence on the longitudinal vibration amplitude, and the feed rate and the cutting depth play major roles for the transverse vibration amplitude. As the spindle speed increases, the overall vibration of tool-tip tends to more stable condition which leads to the results of the best machined surface. The effects of the feed rate and cutting depth provide the reinforcement on the overall vibration to cause the unstability of cutting process and exhibit the result of the worst machined surface.
机译:在精密车削过程中使用金刚石切削刀具,刀尖的振动会对加工表面的质量产生不良影响。本文的目的是提供一种数学模型,用于建模和分析金刚石刀具在精密车削中的振动和表面粗糙度。选择主轴转速,进给速度和切削深度等加工参数作为数值因子,润滑状态作为分类因子。采用基于响应面法的四因子(三数值加一分类)D-最优设计实验方案进行了实验研究。进行微切削测试以可视化刀尖振动对表面粗糙度性能的影响。在实验值高达95%置信区间的情况下,对于实验结果而言,提出振动和表面粗糙度的数学模型是相当不错的。结果表明,主轴转速和进给速度对纵向振动幅度的影响最大,进给速度和切削深度对横向振动幅度起主要作用。随着主轴转速的增加,刀尖的整体振动趋向于更稳定,从而获得最佳加工表面的结果。进给速度和切削深度的影响增强了整体振动,导致切削过程不稳定,并显示出加工表面最差的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号