首页> 外文期刊>The European physical journal, B. Condensed matter physics >Time scale bridging in atomistic simulation of slow dynamics: Viscous relaxation and defect activation
【24h】

Time scale bridging in atomistic simulation of slow dynamics: Viscous relaxation and defect activation

机译:慢速动力学原子模拟中的时标桥接:粘性松弛和缺陷激活

获取原文
获取原文并翻译 | 示例
           

摘要

Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.
机译:原子模拟方法因解决慢速动力学过程的时间限制而众所周知。慢速动力学的两个众所周知的场景是过冷液体中的粘性松弛和应力固体中的蠕变变形。在这两种现象中,理论和模拟的挑战都是有效地采样过渡状态路径并在较长的时间尺度上跟踪动力学过程。我们提出了一种基于偏见分子模拟方法的观点,例如元动力学,自主盆地爬升(ABC),应变升压和自适应升压模拟。这样的算法可以对玻璃状液体的剪切粘度的温度变化以及在经历蠕变变形的固体中的弛豫行为进行原子级解释。通过讨论凝结科学两个截然不同的领域中的慢弛豫动力学,我们希望引起人们对其他复杂问题的关注,在这些问题中,人类学或地质尺度的时间行为可以以原子分辨率模拟并通过微观尺度的过程来理解。分子重排和集体相互作用。作为可以大致归类为材料老化的一类现象的示例,我们指出应力腐蚀开裂和水泥凝固是原子建模和模拟的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号