首页> 外文期刊>The American mineralogist >Cooling-induced crystallization of microlite crystals in two basaltic pumice clasts
【24h】

Cooling-induced crystallization of microlite crystals in two basaltic pumice clasts

机译:冷却诱导的两个玄武质浮石碎屑中微晶的结晶

获取原文
获取原文并翻译 | 示例
           

摘要

Microlites in pumice fragments can record the rate of magma decompression and ascent, but only if none grow while those fragments cool in the atmosphere. For highly viscous silicate melts,such crystallization is unlikely, but more basic melts are known to crystallize rapidly, and thus could partially crystallize during cooling and overprint decompression textures. To examine whether postfragmentation crystallization can occur, we examined two basaltic pumice clasts from the sub-Plinian April 1999 eruption of Shishaldin volcano, Alaska. Radial sectioning shows that microlite content doubles from rim to core in both, mainly from growth of plagioclase. Dendrite magnetite also increases greatly in content, but only within the larger pumice clast. Such radial textures demonstrate that crystallization occurred after fragmentation and before deposition (no welding occurred). Using a conductive cooling model coupled with a model for temperature in the eruption column, we estimate that rims of the pumice clasts cool to their glass-transition temperature in ~100–200 s, but their cores take 500–2000 s to cool, which translates into cooling rates of ~0.2 to 2.5 °C/s. Using a conservative assumption that all plagioclase nucleated before cooling began, we estimate that both short and long axes grew at 4.8 (±2.7) × 10–7 cm/s. Such rates match those determined experimentally for basaltic melts at similar cooling rates. Magnetite grew only at the slowest cooling rates, and the rate of bulk magnetite crystallization equals that of plagioclase. Our results demonstrate that groundmass crystallization can occur in basic melts on the timescale of explosive eruptions, and so pumice clasts from such eruptions must be viewed with caution before being used to infer eruption dynamics.
机译:浮石碎片中的微晶石可以记录岩浆减压和上升的速率,但前提是当这些碎片在大气中冷却时,如果没有增长。对于高粘性硅酸盐熔体,这种结晶是不可能的,但是已知更多的碱性熔体会快速结晶,因此在冷却和叠印减压纹理时可能会部分结晶。为了检查碎片后结晶是否会发生,我们检查了阿拉斯加希沙尔丁火山1999年4月亚次普利尼亚期两次玄武质浮石碎屑。径向切片显示,微晶石含量从边缘到核心都增加了一倍,主要是斜长石的生长。树枝状磁铁矿的含量也大大增加,但仅在较大的浮石碎屑中。这种径向纹理表明,在碎裂之后和沉积之前发生了结晶(没有发生焊接)。使用传导冷却模型和喷发柱温度模型,我们估计浮石碎片的边缘在约100-200 s内冷却至其玻璃化转变温度,但其核心需要500-2000 s进行冷却,转化为约0.2至2.5°C / s的冷却速率。使用保守的假设,即所有斜长石在冷却开始之前就已成核,我们估计短轴和长轴都以4.8(±2.7)×10–7 cm / s的速度增长。这样的速率与在类似冷却速率下对玄武质熔体实验确定的速率相匹配。磁铁矿仅在最慢的冷却速率下生长,并且块状磁铁矿的结晶速率等于斜长石的结晶速率。我们的结果表明,在爆炸爆发的时间尺度上,基本熔体中可能会发生地层结晶,因此,在用于推断爆发动力学之前,必须谨慎观察此类爆发产生的浮石碎屑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号