首页> 外文期刊>Pure and Applied Geophysics >Modelling rupture dynamics of a planar fault in 3-D half space by boundary integral equation method: An overview
【24h】

Modelling rupture dynamics of a planar fault in 3-D half space by boundary integral equation method: An overview

机译:用边界积分方程法模拟3-D半空间中平面断层的破裂动力学:概述

获取原文
获取原文并翻译 | 示例
           

摘要

In this article, we first reviewed the method of boundary integral equation (BIEM) for modelling rupture dynamics of a planar fault embedded in a 3-D elastic half space developed recently (ZHANG and CHEN, 2005a,b). By incorporating the half-space Green's function, we successfully extended the BIEM, which is a powerful tool to study earthquake rupture dynamics on complicated fault systems but limited to full-space model to date, to half-space model. In order to effectively compute the singular integrals in the kernels of the fundamental boundary integral equation, we proposed a regularization procedure consisting of the generalized Apsel-Luco correction and the Karami-Derakhshan algorithm to remove all the singularities, and developed an adaptive integration scheme to efficiently deal with those nonsingular while slowly convergent integrals. The new BIEM provides a powerful tool for investigating the physics of earthquake dynamics. We then applied the new BIEM to investigate the influences of geometrical and physical parameters, such as the dip angle (delta) and depth (h) of the fault, radius of the nucleation region (R-asp), slip-weakening distance (D-c), and stress inside (T-i) and outside (T-e) the nucleation region, on the dynamic rupture processes on the fault embedded in a 3-D half space, and found that (1) overall pattern of the rupture depends on whether the fault runs up to the free surface or not, especially for strike-slip, (2) although final slip distribution is influenced by the dip angle of the fault, the dip angle plays a less important role in the major feature of the rupture progress, (3) different value of h, delta, R-asp, T-e, T-i and D-c may influence the balance of energy and thus the acceleration time of the rupture, but the final rupture speed is not controlled by these parameters.
机译:在本文中,我们首先回顾了边界积分方程(BIEM)的方法,该方法用于对嵌入在最近开发的3-D弹性半空间中的平面断层的破裂动力学进行建模(ZHANG和CHEN,2005a,b)。通过合并半空间格林函数,我们成功地扩展了BIEM,BIEM是研究复杂断层系统但至今仅限于全空间模型的地震破裂动力学的有力工具,已扩展为半空间模型。为了有效地计算基本边界积分方程的核中的奇异积分,我们提出了一种由广义Apsel-Luco校正和Karami-Derakhshan算法组成的正则化程序,以消除所有奇异性,并提出了一种自适应积分方案。有效地处理那些非奇异而缓慢收敛的积分。新的BIEM为调查地震动力学的物理特性提供了强大的工具。然后,我们使用新的BIEM来研究几何和物理参数的影响,例如断层的倾角(δ)和深度(h),成核区域的半径(R-asp),滑弱距离(Dc ),并在成核区域的内部(Ti)和外部(Te)施加应力,对嵌在3-D半空间中的断层进行动态破裂过程,发现(1)破裂的总体模式取决于断层是否(2)尽管最终滑动分布受断层倾角的影响,但倾角在破裂过程的主要特征中起着较小的作用,( 3)h,δ,R-asp,Te,Ti和Dc的不同值可能会影响能量平衡,从而影响破裂的加速时间,但最终破裂速度不受这些参数控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号