首页> 外文期刊>Pure and Applied Geophysics >GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation
【24h】

GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation

机译:板块边界天文台的GEM板块边界模拟:通过观察,理论和数值模拟来理解复杂断层网络上地震物理的程序

获取原文
获取原文并翻译 | 示例
       

摘要

The last five years have seen unprecedented growth in the amount and quality of geodetic data collected to characterize crustal deformation in earthquake-prone areas such as California and Japan. The installation of the Southern California Integrated Geodetic Network (SCIGN) and the Bay Area Regional Deformation (BARD) network are two examples. As part of the recently proposed Earthscope NSF/GEO/EAR/MRE initiative, the Plate Boundary Observatory (PBO) plans to place more than a thousand GPS, strainmeters, and deformation sensors along the active plate boundary of the western coast of the United States, Mexico and Canada (http://ww.earthscope.org/pbo.com.html). The scientific goals of PBO include understanding how tectonic plates interact, together with an emphasis on understanding the physics of earthquakes. However, the problem of understanding the physics of earthquakes on complex fault networks through observations alone is complicated by our inability to study the problem in a manner familiar to laboratory scientists, by means of controlled, fully reproducible experiments. We have therefore been motivated to construct a numerical simulation technology that will allow us to study earthquake physics via numerical experiments. To be considered successful, the simulations must not only produce observables that are maximally similar to those seen by the PBO and other observing programs, but in addition the simulations must provide dynamical predictions that can be falsified by means of observations on the real fault networks. In general, the dynamical behavior of earthquakes on complex fault networks is a result of the interplay between the geometric structure of the fault network and the physics of the frictional sliding process. In constructing numerical simulations of a complex fault network, we will need to solve a variety of problems, including the development of analysis techniques (also called data mining), data assimilation, space-time pattern definition and analysis, and visualization needs. Using simulations of the network of the major strike-slip faults in southern California, we present a preliminary description of our methods and results, and comment upon the relative roles of fault network geometry and frictional sliding in determining the important dynamical modes of the system.
机译:在过去的五年中,为描述地震多发地区(例如加利福尼亚和日本)的地壳变形而收集的大地测量数据的数量和质量空前增长。南加州综合大地测量网络(SCIGN)和湾区区域变形(BARD)网络的安装是两个示例。作为最近提议的Earthscope NSF / GEO / EAR / MRE计划的一部分,板块边界天文台(PBO)计划在美国西海岸的活动板块边界上放置一千多个GPS,应变仪和变形传感器,墨西哥和加拿大(http://ww.earthscope.org/pbo.com.html)。 PBO的科学目标包括了解构造板块如何相互作用,以及强调了解地震的物理学。但是,仅凭观测就无法了解复杂断层网络上的地震物理性,这使我们无法以受控的,完全可重复的实验方法,以实验室科学家熟悉的方式研究问题,从而使问题变得复杂。因此,我们有动力构造一种数值模拟技术,该技术将使我们能够通过数值实验研究地震物理。为了被认为是成功的,模拟不仅必须产生与PBO和其他观测程序所看到的最大相似的可观测物,而且模拟还必须提供可以通过对实际故障网络的观察加以伪造的动态预测。通常,复杂断层网络上的地震动力学行为是断层网络的几何结构与摩擦滑动过程的物理相互作用的结果。在构建复杂故障网络的数值模拟时,我们需要解决各种问题,包括分析技术(也称为数据挖掘)的发展,数据同化,时空模式的定义和分析以及可视化需求。通过对南加州主要走滑断层网络的模拟,我们对方法和结果进行了初步描述,并对断层网络几何形状和摩擦滑动在确定系统重要动力模式方面的相对作用进行了评论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号