首页> 外文期刊>Physics of life reviews >Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition
【24h】

Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition

机译:建立认知生物学的计算框架:统一认知神经科学和比较认知的方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a neurally-grounded framework for theoretical cognitive science is within reach that can move beyond polarized debates and provide a more adequate theoretical future for cognitive biology.
机译:理解认知的进步需要建立在其他自然科学基础上的定量理论框架,并能够在解释的实现,算法和计算水平之间架起桥梁。我回顾了神经科学和认知生物学的最新成果,这些成果结合起来可以为当代认知科学提供这种改进的概念框架的关键组成部分。从神经元水平开始,我首先讨论当代认识到单个神经元是功能强大的树形计算机,这意味着将学习和可塑性的计算模型重新定向到较低的细胞水平。然后,我转向预测系统理论(预测编码和基于预测的学习),该理论提供了一个功能强大的正式框架,可以更全面地理解大脑功能。尽管有关预测编码的大多数形式化模型都是用联想论者来构架的,但我认为现代数据有必要以认知术语重新解释此类模型:作为基于模型的预测系统。最后,我回顾了计算理论和形式语言理论在最近的比较生物学研究爆炸中的作用,这些研究试图隔离和探索不同物种在认知能力上的差异。迄今为止的实验强烈表明,人类与大多数其他物种之间存在重要区别,最能被我们的物种从认知上表征为从连续数据推断树木结构的倾向。从计算上讲,这种能力意味着产生能力要高于正常(有限状态)水平。在实现上,它需要与下推堆栈具有某种神经等效性。我将这种不寻常的人类倾向称为“ dendrophilia”,并就如何在人脑中实现这种系统,其如何演化和为何演化以及这对语言习得模型意味着什么提出了一些具体建议。我得出的结论是,尽管还有许多工作要做,但理论认知科学的神经基础框架是可以触及的,它可以超越两极分化的辩论,并为认知生物学提供更充分的理论前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号