首页> 外文期刊>Physical review, B >Orbital origin of the electrical conduction in ferromagnetic atomic-size contacts: Insights from shot noise measurements and theoretical simulations
【24h】

Orbital origin of the electrical conduction in ferromagnetic atomic-size contacts: Insights from shot noise measurements and theoretical simulations

机译:铁磁原子级触点中电的轨道起源:散粒噪声测量和理论模拟的启示

获取原文
获取原文并翻译 | 示例
       

摘要

With the goal of elucidating the nature of spin-dependent electronic transport in ferromagnetic atomic contacts, we present here a combined experimental and theoretical study of the conductance and shot noise of metallic atomic contacts made of the 3d ferromagnetic materials Fe, Co, and Ni. For comparison, we also present the corresponding results for the noble metal Cu. Conductance and shot noise measurements, performed using a low-temperature break-junction setup, show that in these ferromagnetic nanowires, (i) there is no conductance quantization of any kind, (ii) transport is dominated by several partially open conduction channels, even in the case of single-atom contacts, and (iii) the Fano factor of large contacts saturates to values that clearly differ from those of monovalent (nonmagnetic) metals. We rationalize these observations with the help of a theoretical approach that combines molecular dynamics simulations to describe the junction formation with nonequilibrium Green's function techniques to compute the transport properties within the Landauer-Buttiker framework. Our theoretical approach successfully reproduces all the basic experimental results and it shows that all the observations can be traced back to the fact that the d bands of the minority-spin electrons play a fundamental role in the transport through ferromagnetic atomic-size contacts. These d bands give rise to partially open conduction channels for any contact size, which in turn lead naturally to the different observations described above. Thus, the transport picture for these nanoscale ferromagnetic wires that emerges from the ensemble of our results is clearly at variance with the well established conduction mechanism that governs the transport in macroscopic ferromagnetic wires, where the d bands are responsible for the magnetism but do not take part in the charge flow. These insights provide a fundamental framework for ferromagnetic-based spintronics at the nanoscale.
机译:为了阐明铁磁原子接触中自旋相关电子传输的性质,我们在此介绍由3d铁磁材料Fe,Co和Ni制成的金属原子接触的电导和散粒噪声的组合实验和理论研究。为了进行比较,我们还给出了贵金属Cu的相应结果。使用低温断开结装置进行的电导和散粒噪声测量表明,在这些铁磁纳米线中,(i)没有任何类型的电导量化,(ii)传输由几个部分开放的导电通道控制,甚至对于单原子接触,(iii)大接触的Fano系数饱和到明显不同于单价(非磁性)金属的Fano值。我们借助理论方法来合理化这些观察结果,该方法结合了分子动力学模拟来描述结点的形成以及非平衡格林函数技术来计算Landauer-Buttiker框架内的传输性质。我们的理论方法成功地再现了所有基本的实验结果,并且表明所有观察结果都可以追溯到少数自旋电子的d波段在通过铁磁原子尺寸接触的传输中起基本作用的事实。对于任何接触尺寸,这些d波段都会导致部分打开的导电通道,这自然会导致上述不同的观察结果。因此,从我们的结果集合中得出的这些纳米级铁磁线的输运图显然与支配宏观铁磁线中输运的行之有效的传导机制不同,在这种传导机制中,d波段负责磁性,但不带电荷流的一部分。这些见解为纳米级铁磁性自旋电子学提供了基本框架。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号