...
首页> 外文期刊>Astronomy and astrophysics >Blazar synchrotron emission of instantaneously power-law injected electrons under linear synchrotron, non-linear SSC, and combined synchrotron-SSC cooling
【24h】

Blazar synchrotron emission of instantaneously power-law injected electrons under linear synchrotron, non-linear SSC, and combined synchrotron-SSC cooling

机译:线性同步加速器,非线性SSC和同步加速器-SSC组合冷却下的瞬时幂律注入电子的Blazar同步加速器发射

获取原文

摘要

Context. The broadband spectral energy distributions (SED) of blazars show two distinct components which in leptonic models are associated with synchrotron and synchrotron self-Compton (SSC) emission of highly relativistic electrons. In some sources the SSC?component dominates the synchrotron peak by one or more orders of magnitude implying that the electrons mainly cool by inverse Compton collisions with their self-made synchrotron photons. Therefore, the linear synchrotron loss of electrons, which is normally invoked in emission models, has to be replaced by a nonlinear loss rate depending on an energy integral of the electron distribution. This modified electron cooling changes significantly the emerging radiation spectra. Aims. It is the purpose of this work to apply this new cooling scenario to relativistic power-law distributed electrons, which are injected instantaneously into the jet. Methods. We assume a spherical, uniform, nonthermal source, where the distribution of the electrons is spatially and temporally isotropic throughout the source. We will first solve the differential equation of the volume-averaged differential number density of the electrons, and then discuss their temporal evolution. Since any non-linear cooling will turn into linear cooling after some time, we also calculated the electron number density for a combined cooling scenario consisting of both the linear and non-linear cooling. For all cases, we will also calculate analytically the emerging optically thin time-integrated synchrotron intensity spectrum, also named the fluence, and compare it to a numerical solution. Results. The first result is that the combined cooling scenario depends critically on the value of the injection parameter α0. For values α0???1 the electrons cool mainly linear, while in the opposite case the cooling begins non-linear and becomes linear for later times. Secondly, in all cased we find that for small normalized frequencies f?
机译:上下文。 Blazars的宽带光谱能量分布(SED)显示了两个不同的分量,在轻子模型中它们与高相对论电子的同步加速器和同步加速器自康普顿(SSC)发射相关。在某些光源中,SSC?组分以一个或多个数量级控制同步加速器峰,这意味着电子主要是通过与其自制的同步加速器光子发生逆康普顿碰撞而冷却的。因此,通常必须在发射模型中调用的电子线性同步加速器损耗必须由取决于电子分布能量积分的非线性损耗率来代替。这种改进的电子冷却显着改变了新兴的辐射光谱。目的这项工作的目的是将这种新的冷却方案应用于相对论的幂律分布的电子,该电子被瞬间注入到射流中。方法。我们假设一个球形,均匀,非热源,其中整个源中电子的分布在空间和时间上各向同性。我们将首先求解电子的体积平均微分数密度的微分方程,然后讨论它们的时间演化。由于任何非线性冷却都会在一段时间后转变为线性冷却,因此我们还计算了由线性冷却和非线性冷却组成的组合冷却方案的电子数密度。对于所有情况,我们还将分析计算出的新兴光学薄时间积分同步加速器强度谱(也称为注量),并将其与数值解进行比较。结果。第一个结果是,组合的冷却方案主要取决于喷射参数α0的值。对于值α0≈1,电子主要冷却成线性,而在相反情况下,冷却开始呈非线性,并在以后变为线性。其次,在所有情况下,我们发现对于小的归一化频率f 1≤α1,注量谱F(f)表现出具有恒定谱指数F(f)2〜f 2的幂律。我们发现对于纯线性冷却,ΔSYNα=π1/ 2,而对于纯非线性冷却,ΔSSCα=Δ3/ 2。在组合冷却方案中,我们获得了小喷射参数?1?=?1/2,大喷射参数?2?=?3/2,对于非常小的频率,它变为?1?=?1/2 。与现有的单能注入电子计算相比,这些相同的行为证明了总同步加速器注量的光谱行为与能量注入光谱的功能形式无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号