...
首页> 外文期刊>IEEE transactions on wireless communications >Low-Complexity Truncated Polynomial Expansion DL Precoders and UL Receivers for Massive MIMO in Correlated Channels
【24h】

Low-Complexity Truncated Polynomial Expansion DL Precoders and UL Receivers for Massive MIMO in Correlated Channels

机译:用于相关信道中大规模MIMO的低复杂度截断多项式扩展DL预编码器和UL接收器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In Time Division Duplex reciprocity-based massive MIMO, it is essential to compute the downlink precoding matrix over all OFDM resource blocks within a small fraction of the uplink-downlink slot duration. Because of this harsh computation latency constraint, early implementations of massive MIMO considered the simple Conjugate Beamforming (ConjBF) precoding method. On the other hand, it is well-known that in the regime of a large but finite number of antennas, the Regularized Zero-Forcing (RZF) precoding is generally much more effective than ConjBF. In order to close the gap between ConjBF and RZF, while meeting the latency constraint, truncated polynomial expansion (TPE) methods have been proposed. In this paper, we present a novel TPE method that outperforms previously proposed methods in the non-symmetric case of users with different channel correlations, subject to the condition that the covariance matrices of the user channel vectors can be approximated, for a large number of antennas, by a family of matrices with common eigenvectors. This condition is met, for example, by uniform linear and uniform planar arrays in far-field conditions. The proposed method is computationally simple and lends itself to classical power allocation optimization such as minsum power and max-min rate. We provide a detailed analysis of the computation latency vs computation resources, specifically targeted to a highly parallel FPGA hardware architecture. We conclude that the proposed TPE method can effectively close the performance gap between ConjBF and RZF with computation latency of less than one LTE OFDM symbol, as assumed in Marzetta's work on massive MIMO.
机译:在基于时分双工互惠的大规模MIMO中,必须在上行链路-下行链路时隙持续时间的一小部分内,在所有OFDM资源块上计算下行链路预编码矩阵。由于此苛刻的计算等待时间约束,大规模MIMO的早期实现考虑了简单的共轭波束成形(ConjBF)预编码方法。另一方面,众所周知的是,在天线数量大但数量有限的情况下,规则归零强制(RZF)预编码通常比ConjBF更有效。为了缩小ConjBF和RZF之间的差距,同时满足延迟约束,提出了截断多项式展开(TPE)方法。在本文中,我们提出了一种新颖的TPE方法,该方法在具有大量信道相关性的用户信道向量的协方差矩阵可以近似的条件下,在具有不同信道相关性的用户的非对称情况下优于先前提出的方法。天线,由具有共同特征向量的矩阵族组成。例如,通过在远场条件下使用均匀的线性和均匀的平面阵列可以满足此条件。所提出的方法在计算上很简单,并且适合于经典的功率分配优化,例如最小和功率和最大-最小速率。我们提供了针对计算延迟与计算资源的详细分析,特别针对高度并行的FPGA硬件架构。我们得出的结论是,如Marzetta在大规模MIMO上所做的工作所假设的那样,所提出的TPE方法可以有效地缩小ConjBF和RZF之间的性能差距,且计算延迟小于一个LTE OFDM符号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号