首页> 外文期刊>Wind Energy >Wind turbine blade vibration at standstill conditions-the effect of imposing lag on the aerodynamic response of an elastically mounted airfoil
【24h】

Wind turbine blade vibration at standstill conditions-the effect of imposing lag on the aerodynamic response of an elastically mounted airfoil

机译:静止状态下的风力涡轮机叶片振动-滞后对弹性安装翼型的空气动力响应的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering-type computational model for the aeroelastic response of an elastically mounted airfoil was used to investigate the influence of temporal lag in the aerodynamic response on the aeroelastic stability in deep stall. The study indicated that even a relatively low lag significantly increases the damping of the model. A comparison between the results from a model with lag imposed on all force components with the results from a model with lag imposed exclusively on the lift showed only marginal difference between the damping in the two cases. A parameter study involving positions of the elastic hinge point and the center of gravity indicated that the stability is relatively independent of these parameters. Another parameter study involving spring constants showed that the stability of each mode is dependent only on the spring constant acting in the direction of the leading motion of the mode. An investigation of the influence of the added mass terms showed that only the pitch-rate and flapwise-acceleration terms have any influence on the stability. An investigation of three different profiles showed that the stability is heavily dependent on the aerodynamic characteristics of the profiles-mainly on the lift. It was also shown that only the edgewise mode is unstable in deep stall. Moreover, independent of the amount of temporal lag in the aerodynamic response of the model, the inflow-angle region in the vicinity of 180° remains unstable in the edgewise mode. Therefore, this inflow-angle region may create stability problems in real life. The other type of vibrations potentially present at standstill conditions is vortex-induced, being outside the scope of the present study.
机译:本研究调查了与静止状态下风力涡轮机叶片上可能存在的失速感应振动有关的物理现象。该研究考虑了二维翼型截面,而忽略了三维效应。在研究中,采用了一种新的工程类型的弹性安装翼型气动弹性响应计算模型,以研究气动滞后中的时间滞后对深空失速气动弹性稳定性的影响。研究表明,即使是相对较低的滞后,也会显着增加模型的阻尼。将对所有力分量施加滞后的模型的结果与仅对升力施加滞后的模型的结果进行比较,发现在两种情况下,阻尼之间仅存在边际差异。涉及弹性铰链点和重心位置的参数研究表明,稳定性相对独立于这些参数。另一项涉及弹簧常数的参数研究表明,每个模式的稳定性仅取决于作用在模式前移方向上的弹簧常数。对增加的质量项的影响进行的研究表明,只有俯仰率和襟翼加速度项对稳定性有任何影响。对三种不同轮廓的研究表明,稳定性在很大程度上取决于轮廓的空气动力学特性,主要是在举升机上。还表明,在深度失速中只有边沿模式是不稳定的。此外,与模型的空气动力学响应中的时间滞后量无关,在边向模式下,在180°附近的流入角区域保持不稳定。因此,该流入角度区域可能在现实生活中产生稳定性问题。静止状态下可能出现的另一种振动是涡旋引起的,不在本研究范围之内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号