首页> 外文期刊>Wind Energy >System identification and controller design for individual pitch and trailing edge flap control on upscaled wind turbines
【24h】

System identification and controller design for individual pitch and trailing edge flap control on upscaled wind turbines

机译:用于高档风轮机的单个桨距和后缘襟翼控制的系统识别和控制器设计

获取原文
获取原文并翻译 | 示例
           

摘要

Active load reduction strategies such as individual pitch control (IPC) and trailing edge flap (TEF) actuation present ways of reducing the fatigue loads on the blades of wind turbines. This may enable development of lighter blades, improving the performance, cost effectiveness and viability of future multi-megawatt turbine designs. Previous investigations into the use of IPC and TEFs have been limited to turbines with ratings up to 5MW and typically investigate the use of these load reduction strategies on a single turbine only. This paper extends the design, implementation and analysis of individual pitch and TEFs to a range of classically scaled turbines between 5 and 20MW. In order to avoid designing controllers which favour a particular scale, identical scale-invariant system identification and controller design processes are applied to each of the turbines studied. Gain-scheduled optimal output feedback controllers are designed using identified models to target blade root load fluctuations at the first and second multiples of the rotational frequency using IPC and TEFs respectively. The use of IPC and TEFs is shown in simulations to provide significant reductions in fatigue loads at the blade root. Fatigue loads on non-rotating components such as the yaw bearing and tower root (yaw moment) are also reduced with the use of TEFs. Individual pitch performance is seen to be slightly lower on larger turbines, potentially due to a combination of reduced actuator bandwidth and movement of the rotational frequency of larger turbines into a more energetic part of the turbulent spectrum. However, TEF performance is consistent irrespective of scale. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:主动减载策略,例如独立桨距控制(IPC)和后缘襟翼(TEF)致动,提出了减少风力涡轮机叶片上疲劳负载的方法。这可以使轻型叶片的开发成为可能,从而提高未来多兆瓦涡轮机设计的性能,成本效益和可行性。先前对IPC和TEF的使用的研究仅限于额定功率高达5MW的涡轮机,并且通常仅在单个涡轮机上研究这些负载减少策略的使用。本文将单个变桨和TEF的设计,实施和分析扩展到5至20MW之间的一系列经典比例的涡轮机。为了避免设计偏向特定比例的控制器,将相同的比例不变系统识别和控制器设计过程应用于每个研究的涡轮机。使用确定的模型设计增益调度的最佳输出反馈控制器,以分别使用IPC和TEF将目标叶片根负载波动定在旋转频率的第一和第二倍。仿真中显示了IPC和TEF的使用,可显着降低叶片根部的疲劳载荷。使用TEF还可以减少非旋转组件(如偏航轴承和塔根)的疲劳载荷(偏航力矩)。在大型涡轮机上,单个螺距性能可能会略低,这可能是由于减小的致动器带宽和大型涡轮机的旋转频率向湍流频谱中更活跃的部分移动所造成的。但是,无论规模大小,TEF的性能都是一致的。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号