首页> 外文期刊>Welding and cutting >Weldability of advanced high strength steel drawn arc stud welding
【24h】

Weldability of advanced high strength steel drawn arc stud welding

机译:先进高强度钢拉丝螺柱焊的可焊性

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents the findings of a weldability study of drawn arc stud welding various advanced high strength steels (AHHS) including Usibor, uncoated Boron steel and HC500C (DP800) of various thicknesses and coatings from several automakers and benchmarked against mild steel. M6 wide top (or large flange) stud is used in the study. Instead of poking for a 9-box weld lobe from trial-and-error, a robot is used to comb a 3D weld parameter space of arc current, arc time and lift height, with a parameter grid of 380 to 1,200 welds for each AHHS grade. A Design of Ex periments (DOE) approach maps out the relationship between DOE inputs of control variables and DOE outputs of weld quality statistically. The objective and subjective weld quality are mea sured, including destructive conical bend for weld strength, dim ple, sag, burn-through, head melting, cracking, excessive expulsion and backside marking. Among the 3,496 welds visually classified, photographed from both sides and destructively tested, it is found that not all AHHS behave the same in drawn arc welding. AHHS of different type, thickness and coating exhibits different welding characteristics. Mild steel as a baseline has the classic C or kidney shaped ope rating lobe and the best weldability characterised by the largest lobe size and tolerance to lift. Uncoated Boron steel of 1.2 mm and 1.4 mm thickness has excellent weldability at lower lift, with deteriorating performance at higher lift. It is best welded at hot and fast settings. Usibor of 1.4 mm thickness has marginal wel dability. It is best welded at slow and cool settings. At 1.0 mm thickness it cannot pull 70% nugget at optimum settings. HC500C of 0.8 mm thickness has unacceptable weldability but shows po tential in very hot and fast settings.
机译:本文介绍了几种汽车制造商对各种先进高强度钢(AHHS)进行拉丝电弧螺柱焊的可焊性研究的结果,这些高强度钢包括Usibor,无涂层硼钢和各种厚度和涂层的HC500C(DP800),并以低碳钢为基准。研究中使用了M6宽顶(或大法兰)螺柱。机器人不是通过反复试验来戳入9盒焊缝,而是使用机器人来梳理电弧电流,电弧时间和升程高度的3D焊接参数空间,每个AHHS的参数网格为380至1,200个焊缝年级。实验设计(DOE)方法统计地绘制出控制变量的DOE输入与焊接质量的DOE输出之间的关系。可以测量客观和主观的焊接质量,包括破坏性的圆锥形弯曲,以应对焊接强度,塌陷,下垂,烧穿,焊头熔化,开裂,过度排出和背面痕迹。从外观上进行目视分类,从两侧拍照并进行破坏性测试的3,496个焊缝中,发现并非所有AHHS在拉弧焊中的表现都相同。不同类型,厚度和涂层的AHHS具有不同的焊接特性。以低碳钢为基准,具有经典的C形或肾形ope等级凸角,并且具有最佳的可焊性,其特征在于最大的凸角尺寸和抗拉力。厚度为1.2 mm和1.4 mm的未涂层硼钢在较低的升程下具有出色的焊接性,在较高的升程下性能会下降。最好在热和快速设置下焊接。 1.4毫米厚的Usibor具有勉强的焊接性。最好在慢冷设置下焊接。在1.0毫米的厚度下,它无法在最佳设置下拉动70%的矿块。厚度为0.8 mm的HC500C的焊接性不可接受,但是在非常热和快速的设置中显示出潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号