...
首页> 外文期刊>Water resources research >Scaling Point-Scale (Pedo)transfer Functions to Seamless Large-Domain Parameter Estimates for High-Resolution Distributed Hydrologic Modeling: An Example for the Rhine River
【24h】

Scaling Point-Scale (Pedo)transfer Functions to Seamless Large-Domain Parameter Estimates for High-Resolution Distributed Hydrologic Modeling: An Example for the Rhine River

机译:缩放点刻度(PEPO)传递到高分辨率分布式水文建模的无缝大域参数估计:莱茵河的示例

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Moving toward high-resolution gridded hydrologic models asks for novel parametrization approaches. A high-resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point-scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6-hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ETact) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling-Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment-averaged temporal ETact dynamics were comparable with independent ET estimates (KGE approximate to 0.7), although wflow_sbm model simulations were on average 115 mm yr(-1) higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ETact fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment-averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue.Plain Language Summary Hydrologic models are used for flood and drought predictions. Most models have parameters, and to increase model performance, hydrologists often tune these parameters by calibration. State-of-the-art gridded hydrologic models have parameter sets per grid cell, leading to many parameters and making current calibration procedures far from ideal. Here, we tested the use of well-known (pedo)transfer functions from literature to estimate these parameter values, something which can reduce the calibration burden. By using parameter-specific upscaling rules to derive seamless parameter maps for the wflow_sbm model, which explicitly takes subsurface lateral flows into account, this gives a model which is scalable to different grid cell sizes. We assessed the approach on multiple model resolutions, and we found consistent parameter fields and the preservation of vertical fluxes. Only routed discharge, a key output, deteriorates for headwater catchments on coarser resolutions. We attribute this to model structure and the derivation procedure of the river network on different scales, resulting in the loss of lateral flow representation on coarser resolutions. Nevertheless, discharge and evapotranspiration simulations are similar to observations and other models. Hence, regionalization with literature transfer functions and upscaling techniques can further lower the calibration burden and enable predictions in ungauged basins.Key PointsSeamless distributed parameter maps can be obtained for the gridded hydrologic model wflow_sbm with transfer functions from literature Application of wflow_sbm with these seamless parameter maps yields simulation results with high KGE and NSE across the Rhine basin Fluxes matched across model scales for evapotranspiration, but this match was considerably less for fluxes affected by (sub)surface flows
机译:向高分辨率网格化的水文模型转向要求新颖的参数化方法。高分辨率概念水文模型(WFLIF_SBM)基于点尺度(PEPO)传递函数参数为欧洲的莱茵河盆地参数化,而无需进一步校准有效模型参数的放电。在数据分辨率上估计参数,然后将参数字段上升到模型分辨率。使用四个模型分辨率(1.2,2.4,3.6和4.8km)的6小时时间步骤测试该方法,然后进行排出观察的验证,以及与独立模型的实际蒸散(Etact)估计进行比较(DMET土地表面分析卫星应用设施)。另外,测试了参数字段和模拟通量的可扩展性。除了在体积偏置导致性能下降的阿尔卑斯山之外,模拟排出的验证产生了0.6至0.9的kling-uppta效率(Kge)值。集水区均线atternatact动态与独立的ET估计相当(KGE近似为0.7),尽管WFLIM_SBM模型模拟平均为115mm YR(-1)。在空间上,两种型号的一致性较少(Spaef = 0.10),特别是在莱茵河谷周围。获得了一致的参数字段,并且通过在不同分辨率下运行模型,在尺度上发现保留的atacc助量。对于充电,助焊剂与具有高引流密度的区域约为30%的相对误差。然而,节水量平均的助熔剂更好地保存。虽然主莱茵河的模拟是尺度的尺度,但是在右侧的路线放电并不一致。河流和排水网络的更好处理(规模独立)可能会克服这一问题。普拉语言摘要水文模型用于洪水和干旱预测。大多数型号都有参数,并提高模型性能,水文学家通常通过校准调整这些参数。最先进的网格化水文模型具有每个网格单元的参数集,导致许多参数,并使电流校准程序远非理想。在这里,我们测试了使用文献中的众所周知(PEPO)传递函数来估计这些参数值,这可以减少校准负担。通过使用参数特定的Upscaling规则来导出WFlow_SBM模型的无缝参数映射,该映射将其明确地拍摄了地下横向流,这使得一个模型可扩展到不同的网格单元尺寸。我们评估了多种模型分辨率的方法,我们找到了一致的参数字段和保存垂直通量。只有路由放电,一个钥匙输出,较粗糙分辨率的椎间口集水区劣化。我们将此归因于模型结构和不同尺度河流网络的推导过程,导致较粗糙分辨率的横向流量表示丢失。然而,放电和蒸发蒸腾模拟类似于观察和其他模型。因此,具有文献传输函数和Upscaling技术的区域化可以进一步降低校准负担,并在未吞并的basins中实现预测。可以获得网格化的水文模型WFlow_SBM与来自这些无缝参数映射的文献应用的网格化水文模型WFlow_SBM。在横跨模型尺度的莱茵河盆地助熔剂中呈现高KGE和NSE产生仿真结果,但对于受(子)表面流影响的助熔剂,这种匹配显着较小

著录项

  • 来源
    《Water resources research》 |2020年第4期|e2019WR026807.1-e2019WR026807.28|共28页
  • 作者单位

    Deltares Operat Water Management Dept Inland Water Syst Delft Netherlands|Wageningen Univ & Res Hydrol & Quantitat Water Management Grp Wageningen Netherlands;

    Deltares Dept Inland Water Syst Catchment & Urban Hydrol Delft Netherlands;

    Deltares Operat Water Management Dept Inland Water Syst Delft Netherlands|Wageningen Univ & Res Hydrol & Quantitat Water Management Grp Wageningen Netherlands;

    Deltares Operat Water Management Dept Inland Water Syst Delft Netherlands|Wageningen Univ & Res Hydrol & Quantitat Water Management Grp Wageningen Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    scaling; pedotransfer functions; regionalization; hydrological modeling; parameters;

    机译:缩放;PEDOT转移功能;区域化;水文建模;参数;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号