首页> 外文期刊>Water resources research >Origin and Dynamics of Saltwater Intrusion in a Regional Aquifer: Combining 3-D Saltwater Modeling With Geophysical and Geochemical Data
【24h】

Origin and Dynamics of Saltwater Intrusion in a Regional Aquifer: Combining 3-D Saltwater Modeling With Geophysical and Geochemical Data

机译:区域含水层盐水侵入的起源和动态:将3-D盐水建模与地球物和地球化学数据结合

获取原文
获取原文并翻译 | 示例
       

摘要

Worldwide, aquifers in low-lying coastal areas are threatened by saltwater occurrence, as a result of small head gradients, high groundwater abstraction rates, and drain management of the landscape, which is likely to intensify with climate change. Numerical models can serve as tools to identify the sources of the salt and thus to increase understanding of the driving mechanisms and important parameters controlling the extent of saltwater intrusions. This way, areas vulnerable to sea level rise can be identified and managed. Challenges include unknown initial salt concentrations, heterogeneous geology, and anthropogenic alterations. In this study, hydrogeological, geophysical, and geochemical data are used to develop a numerical density-dependent groundwater flow and transport model with the objective to understand the history of a saltwater-affected groundwater system and its likely response to historic and future changes. The extent of the simulated saltwater intrusion compares well with Airborne Electromagnetic data that show salt water up to 20km inland. The results reveal that the salt water originates from a combination of laterally intruding seawater and vertically infiltrating transgression water. Main features controlling the progression of the modern seawater into the coastal aquifers are high permeable, deep Miocene sand aquifers, buried valleys that provide preferential flow paths in combination with extensive Miocene clay layers that delay saltwater intrusion. Anthropogenic activity enhances the saltwater inflow from the ocean and induces transient conditions. Future scenarios show that saltwater progression due to nonstationarity leads to enhanced contamination of the deeper aquifers. Climate change affects primarily the shallow aquifer systems.
机译:在全球范围内,低洼沿海地区的含水层受到咸水发生的威胁,由于小头梯度,高地下水抽象率和景观的排水管理,这可能会加剧气候变化。数值模型可以用作识别盐的来源的工具,从而增加对控制盐水侵入程度的驱动机制和重要参数的理解。这样,可以识别和管理易受海平面上升的区域。挑战包括未知的初始盐浓度,异质地质和人为改变。在该研究中,水文地质,地球物理和地球化学数据用于开发数值密度依赖性地下水流量和运输模型,目的是了解盐水影响的地下水系统的历史及其对历史和未来变化的可能反应。模拟咸水入侵的程度与空中电磁数据相比,将盐水显示出高达20km的内陆。结果表明,盐水源自横向侵入海水和垂直渗透过离境的组合。控制现代海水进入沿海含水层的主要特点是高渗透性的,深层中间型砂含水层,埋地谷,提供优先流动路径与延迟咸水侵入的广泛的内突粘土层。人为活性增强了海洋的咸水流入,并诱导瞬态条件。未来的情景表明,由于非间抗性,咸水进展导致更深层次的含水层的污染。气候变化主要影响浅含水层系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号