...
首页> 外文期刊>Water resources research >On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials
【24h】

On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials

机译:色散和非导电介电材料中时域反射法的有效测量频率

获取原文
获取原文并翻译 | 示例

摘要

Time domain reflectometry (TDR) is one of the most commonly used techniques for water content determination in the subsurface. The measurement results in a single bulk permittivity value that corresponds to a particular, but unknown, "effective" frequency (f_(eff)). Estimating f_(eff) using TDR is important, as it allows comparisons with other techniques, such as impedance or capacitance probes, or microwave remote sensing devices. Soils, especially those with high clay and organic matter content, show appreciable dielectric dispersion, i.e., the real permittivity changes as a function of frequency. Consequently, comparison of results obtained with different sensor types must account for measurement frequency in assessing sensor accuracy and performance. In this article we use a transmission line model to examine the impact of dielectric dispersion on the TDR signal, considering lossless materials (negligible electrical conductivity). Permittivity is inferred from the standard tangent line fitting procedure (K_(aTAN)) and by a method of using the apex of the derivative of the TDR waveform (K_(aDER)). The permittivity determined using the tangent line method is considered to correspond to a velocity associated with a maximum passable frequency; whereas we consider the permittivity determined from the derivative method to correspond with the frequency associated with the signal group velocity. The effective frequency was determined from the 10-90% risetime of the reflected signal. On the basis of this definition, f_(eff) was found to correspond with the permittivity determined from K_(aDER) and not from K_(aTAN) in dispersive dielectrics. The modeling is corroborated by measurements in bentonite, ethanol and 1 -propanol/water mixtures, which demonstrate the same result. Interestingly, for most nonconductive TDR measurements, frequencies are expected to lie in a range from 0.7 to 1 GHz, while in dispersive media, f_(eff) is expected to fall below 0.6 GHz.
机译:时域反射法(TDR)是确定地下水含量的最常用技术之一。该测量产生对应于特定但未知的“有效”频率(f_(eff))的单个体积介电常数值。使用TDR估算f_(eff)很重要,因为它可以与其他技术进行比较,例如阻抗或电容探头或微波遥感设备。土壤,特别是那些粘土和有机物含量高的土壤,表现出明显的介电色散,即实际介电常数随频率变化。因此,使用不同类型的传感器获得的结果进行比较时,必须考虑测量频率,以评估传感器的精度和性能。在本文中,我们考虑无损材料(电导率可忽略不计),使用传输线模型检查电介质色散对TDR信号的影响。由标准切线拟合程序(K_(aTAN))和使用TDR波形导数顶点(K_(aDER))的方法推断介电常数。使用切线法确定的介电常数被认为对应于与最大可通过频率相关的速度。而我们认为由导数法确定的介电常数与与信号组速度相关的频率相对应。有效频率由反射信号的10-90%上升时间确定。根据该定义,发现f_(eff)对应于由K_(aDER)而不是由K_(aTAN)确定的介电常数。通过在膨润土,乙醇和1-丙醇/水的混合物中进行测量,证实了该模型的结果。有趣的是,对于大多数非导电TDR测量,频率预计在0.7到1 GHz的范围内,而在分散介质中,f_(eff)预计会降至0.6 GHz以下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号