...
首页> 外文期刊>Water resources research >Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities
【24h】

Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities

机译:示踪剂测试和电地球物理数据的随机反演,以估算水力传导率

获取原文
获取原文并翻译 | 示例
           

摘要

Quantifying the spatial configuration of hydraulic conductivity (K.) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.
机译:定量分析非均质地质环境中的水力传导率(K.)的空间配置对于准确预测污染物的传输至关重要,但由于分辨率和覆盖范围与传统水文测量相关联的固有局限性,因此很难实现。为了解决这个问题,我们考虑了在盐水示踪剂实验期间及时收集的基于井眼和基于表面的电阻率地球物理测量结果。我们使用贝叶斯马尔可夫链蒙特卡洛(McMC)方法来联合反演动态电阻率数据以及钻孔示踪剂浓度数据,以生成与所有可用信息一致的K的多个后验实现。我们在耦合反演框架中进行此操作,通过电阻率和浓度之间的不确定关系将地球物理和水文正演模型联系起来。为了最大程度地减少计算费用,开发了基于相的地下参数化方法。 Bayesian-McMC方法使我们能够通过检查地球物理数据对我们识别地下快速流径的能力的影响及其对水文预测不确定性的影响,来探索将地球物理数据纳入反问题的潜在好处。通过使用复杂的地统计学方法生成的代表河流环境的二维数值示例,我们证明了当包含电阻率数据时,可以改进流模型校准并减少预测误差。对于地下非均质性相对于井眼分离的长空间相关长度而言,发现地球物理数据的价值最大,因为井眼分离在很大程度上是由高度相连的流路控制的。

著录项

  • 来源
    《Water resources research》 |2010年第11期|p.W11514.1-W11514.16|共16页
  • 作者

    James Irving; Kamini Singha;

  • 作者单位

    Faculty of Geoscienees and Environment, University of Lausanne, Lausanne. Switzerland,School of Engineering, University of Guclph, Guclph, OntarioNIG 2WI, Canada;

    Department of Geosciences, Pennsylvania Slate University,311 Deike Building, University Park, PA 16802, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号