首页> 外文期刊>Water resources research >Air, ground, and groundwater recharge temperatures in an alpine setting, Brighton Basin, Utah
【24h】

Air, ground, and groundwater recharge temperatures in an alpine setting, Brighton Basin, Utah

机译:犹他州布莱顿盆地的高山环境中的空气,地面和地下水补给温度

获取原文
获取原文并翻译 | 示例
           

摘要

[1] Noble gases are useful tracers for constraining groundwater recharge temperature and elevation, critical in determining source areas of groundwater recharge in mountainous terrain. A monitoring network in the alpine Brighton Basin in the Wasatch Mountains of northern Utah, USA, was established to examine the relationship between air temperatures, ground temperatures, and noble gas groundwater recharge temperatures. Maximum noble gas groundwater recharge temperatures computed using the closed-system equilibration model from 25 samples collected over the 2 year period 2007 to 2009 averaged 2.9 ± 1.2℃, within the experimental error of the mean ground temperature of 2.3℃ measured within the probable recharge area. Maximum noble gas recharge temperatures vary from 0 to 7℃, also comparable to ground temperature variations in the region. Groundwater ages in the collected samples vary from 0 to 7 years indicating changing flow paths to the collection site during the experiment. Mean ground temperatures in the upper 1 m of soil over the 2 year time period is 2.3℃, which is 1℃ cooler than the mean surface air temperature extrapolated from a nearby meteorological station. This comparison contradicts an earlier observation that mean annual ground temperatures in central Utah are generally warmer than air temperatures. The offset in the Brighton Basin is explained by modeling a snow effect on ground temperature. This detailed study suggests that interpretation of groundwater recharge temperatures derived from noble gases should be attentive to the complex local ground temperature effects in the recharge areas.
机译:[1]稀有气体对于限制地下水补给温度和海拔高度是有用的示踪剂,对于确定山区地形中地下水补给的源区至关重要。在美国北部犹他州沃萨奇山脉的高山布莱顿盆地建立了一个监测网络,以检查空气温度,地面温度和稀有气体地下水补给温度之间的关系。使用封闭系统平衡模型,从2007年至2009年的2年中收集的25个样品中计算出的最高惰性气体地下水补给温度平均为2.9±1.2℃,在可能补给区内测得的平均地面温度为2.3℃的实验误差内。稀有气体的最高补给温度在0至7℃之间变化,也可与该地区的地面温度变化相提并论。收集的样本中的地下水年龄从0到7年不等,表明实验期间流向收集地点的流路发生了变化。在2年时间里,土壤上部1 m的平均地面温度为2.3℃,比附近气象站推算的平均地面温度低1℃。这种比较与先前的观察结果相矛盾,该观察结果表明,犹他州中部的年平均地面温度通常比气温高。布莱顿盆地的偏移量是通过对积雪对地面温度的影响进行建模来解释的。这项详细的研究表明,对稀有气体产生的地下水补给温度的解释应注意补给区域中复杂的局部地面温度影响。

著录项

  • 来源
    《Water resources research》 |2012年第10期|W10530.1-W10530.12|共12页
  • 作者单位

    Department of Geology and Geophysics, University of Utah, 115 S. 1460 E., FASB, Salt Lake City, UT 84112, USA;

    Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA;

    Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号