...
首页> 外文期刊>Water resources research >Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network
【24h】

Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network

机译:混合诱导碳酸钙在微流孔网络中沉淀和溶解的孔隙尺度模拟

获取原文
获取原文并翻译 | 示例

摘要

We develop a 2-D pore scale model of coupled fluid flow, reactive transport, and calcium carbonate (CaCO_3) precipitation and dissolution. The model is used to simulate transient experimental results of CaCO_3 precipitation and dissolution under supersaturated conditions in a microfluidic pore network (i.e., micromodel) in order to improve understanding of coupled reactive transport systems perturbed by geological CO_2 injection. In the micromodel, precipitation is induced by transverse mixing along the centerline in pore bodies. The reactive transport model includes the impact of pH upon carbonate speciation and a CaCO_3 reaction rate constant, the effect of changing reactive surface area upon the reaction, and the impact of pore blockage from CaCO_3 precipitation on diffusion and flow. Overall, the pore scale model qualitatively captured the precipitate morphology, precipitation rate, and maximum precipitation area using parameter values from the literature. In particular, we found that proper estimation of the effective diffusion coefficient (D_(eff)) and the reactive surface area is necessary to adequately simulate precipitation and dissolution rates. In order to match the initial phase of fast precipitation, it was necessary to consider the top and bottom of the micromodel as additional reactive surfaces. In order to match a later phase when dissolution occurred, it was necessary to increase the dissolution rate compared to the precipitation rate, but the simulated precipitate area was still higher than the experimental results after ~30 min, highlighting the need for future study. The model presented here allows us to simulate and mechanistically evaluate precipitation and dissolution of CaCO_3 observed in a micromodel pore network. This study leads to improved understanding of the fundamental physicochemical processes of CaCO_3 precipitation and dissolution under far-from-equilibrium conditions.
机译:我们开发了耦合流体流动,反应性传输以及碳酸钙(CaCO_3)沉淀和溶解的二维孔隙模型。该模型用于模拟CaCO_3在微流体孔网(即微模型)中过饱和条件下的沉淀和溶解的瞬态实验结果,以增进对地质CO_2注入扰动的耦合反应输运系统的理解。在微模型中,沉淀是通过沿孔隙体内中心线的横向混合而引起的。反应性传输模型包括pH对碳酸盐形态和CaCO_3反应速率常数的影响,反应表面积的变化对反应的影响以及CaCO_3沉淀引起的孔堵塞对扩散和流动的影响。总体而言,孔隙尺度模型使用文献中的参数值定性地捕获了沉淀物形态,沉淀速率和最大沉淀面积。特别是,我们发现有效扩散系数(D_(eff))和反应表面积的正确估计对于充分模拟沉淀和溶解速率是必要的。为了匹配快速沉淀的初始阶段,有必要将微模型的顶部和底部视为其他反应性表面。为了与溶出发生的后期相吻合,有必要使溶出速度要比沉淀速度要快,但〜30min后模拟的沉淀面积仍高于实验结果,这有待进一步研究。这里介绍的模型使我们能够模拟和力学评估在微模型孔隙网络中观察到的CaCO_3的沉淀和溶解。这项研究使人们更好地了解了在远非平衡条件下CaCO_3沉淀和溶解的基本物理化学过程。

著录项

  • 来源
    《Water resources research 》 |2012年第2期| p.W02524.1-W02524.11| 共11页
  • 作者单位

    Geomechanics Department, Sandia National Laboratories, P.O. Box 5800, MS 0751, Albuquerque, NM 87185, USA;

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave. (MC-250), Urbana, IL 61801, USA;

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave. (MC-250), Urbana, IL 61801, USA;

    Geomechanics Department, Sandia National Laboratories, P.O. Box 5800, MS 0751, Albuquerque, NM 87185, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号